Course Title: Ecology of Infectious Disease

Proposed Course Number: OCN 340
Prerequisites: Biol 171, 172, or consent of instructor.
Course Format: Lecture, 3 hours/week

Instructor: Dr. Andrea Jani, Department of Oceanography
office: Biomed Tower 311
email: jania@hawaii.edu

Course Description:
Microbes, both beneficial and harmful, are ubiquitous inhabitants of humans, other animals, and plants. In this course we will explore the ecology of infectious diseases, their impact on humans and wildlife, and the effects of human activities on disease spread and transmission. We will learn fundamentals of infectious disease ecology: the interplay between host, pathogen, and environment. We will begin with basic ecology of infectious disease, including concepts of transmission, virulence, density dependence, and the continuum of symbioses from harmless to disease-causing infections. Building on these concepts, students will learn how human-mediated activities such as transport, travel, and environmental change can affect disease transmission. Case studies will be used to illustrate how biology and human activities combine to affect disease transmission. Students will learn about diseases of both humans and wildlife, with an emphasis on diseases that are locally relevant to Hawaii.

Course Format:
This is a lecture based course (3 hour lecture per week), but student participation is expected and encouraged through in-class discussions.

Learning Objectives:
Through this course, students will gain a fundamental understanding of ecological factors that affect the transmission of infectious diseases and their impacts. Students will learn to think critically about the interplay between individual decisions and the larger scale population level consequences for disease risk, and will be asked to consider the ethics of such decisions. This course will emphasize interdisciplinary thinking by illustrating the links between human activities (individual and societal factors) and disease transmission (ecological and biological outcomes). This course will use case studies to emphasize the impacts of infectious disease in Hawaii.
Tentative Schedule:

Week 1
Introduction:
Germ theory and its history
The disease triangle

Week 2
Virulence, incidence, and prevalence
Susceptibility and immunity: overview of SIR models
Transmission modes: direct versus vector-transmitted

Week 3
The outlook on infectious disease: then and now
Historical optimism on the fight against infectious disease
Current emergence of infectious diseases of humans and animals

Week 4
Sources of "new" diseases
Environmental change
Movement of hosts or pathogens
Evolution of virulence
Host range shifts (e.g. zoonoses)

Week 5
Vector-borne diseases in Hawaii
Dengue, Zika, others

Week 6
Disease threats to plants and animals of Hawaii
Avian malaria
Coral diseases
Rapid ohia death
Chytridiomycosis: should we be concerned?

Week 7
Globalization, travel, tourism and disease
Disease and the media: The importance of perception of disease to tourism industry
The importance of herd immunity
Disneyland and measles outbreak in 2015
Relevance to Hawaii's tourism industry

Week 8
Seasonality, climate, and infectious disease
Is the common cold cold?
Global warming: effects on malaria transmission?
Disease transmission and climatic events: cholera and tropical storms.

Week 9
Antibiotics
Discovery and history
Resistance and over-use
Sources of new antibiotics

Week 10
Vaccination
Ecology: Herd immunity
Importance of good science communication: vaccination and autism.
Ethics: should vaccination be required?
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
</table>
| Week 11| Transport and transmission
Ecology: introduction of previously absent pathogens
Hawaii as a hub of transport and travel
Case examples. |
| Week 12| Civic involvement and infectious disease policy |
| Week 13| Hawaii and "neglected tropical diseases" |
| Week 14| Symbiosis and the continuum from mutualism to parasitism (disease)
Hawaiian endemic flora, fauna, and symbiotic microbes
Hawaiian endemic plants and importance of endophytes.
Hawaiian bobtail squid: \textit{Vibrio fisheri} |
| Week 15| The joys of living on a tropical island
Taro farming and leptospirosis |
| Week 16| Review and discussion |