EFFECT OF SEAWATER pH, Mg$^{2+}$ AND CARBONIC ANHYDRASE ON MARINE BIOGENIC CARBONATES AND THEIR δ^{18}O VALUES: FUTURE AND PALEO APPLICATIONS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

OCEANOGRAPHY

JUNE 2012

By
Joji Uchikawa

Dissertation Committee:

Richard E. Zeebe, Chairperson
Brian N. Popp
Yuan–Hui Li
Jane E. Schoonmaker
Gregory E. Ravizza
Abstract

Ocean pH affects marine CaCO₃ cycling and the oxygen isotope (δ¹⁸O) values of biogenic CaCO₃. Based on a carbon–cycle model and laboratory experiments, this study explores future perspectives of ocean acidification and characterizes the mechanism and paleoclimatic implications of the pH effect on δ¹⁸O values of biogenic CaCO₃.

For a release of 5,000 Pg of carbon in 500 years, the surface ocean pH and atmospheric CO₂ will rise to 7.4 and 1,900 ppmv. Eventually anthropogenic CO₂ will be sequestered via continental weathering followed by CaCO₃ burial in sediments. But these processes will not effectively mitigate the predicted carbon–cycle perturbations on centennial timescales.

Studying the impact of CO₂-forcing on global temperatures from past climate events is crucial for predicting future global warming. But paleotemperature reconstructions using δ¹⁸O values of biogenic CaCO₃ can be hampered by past changes in seawater pH. For example, planktonic foraminiferal δ¹⁸O values could have been biased by +0.4‰ at maximum (up to 2 °C of underestimated temperature) due to pH decline during the Paleocene–Eocene Thermal Maximum (~56 Ma).

A proposed explanation for the pH effect on δ¹⁸O values of biogenic CaCO₃ [Zeebe, 1999, 2007] assumes ¹⁸O equilibrium in the CO₂–H₂O system in the calcification microenvironments and that equilibrium fractionation between dissolved CO₂ species and H₂O by Beck et al. [2005] holds in seawater. These assumptions were evaluated by quantitative BaCO₃ precipitation experiments.
focusing on the effect of carbonic anhydrase (CA) and Mg$^{2+}$ on the kinetics and equilibrium of 18O partitioning in the CO$_2$–H$_2$O system.

CA accelerates 18O equilibration in the CO$_2$–H$_2$O system by catalyzing CO$_2$ hydration. Calculations suggest that 18O equilibration within the timescales of calcification is possible with 10^{-8} to 10^{-7} M of CA. Mg$^{2+}$ is the most important cation for complex formation with CO$_3^{2-}$ in seawater. Although the MgCO$_3^0$ abundance in the total dissolved CO$_2$ was varied up to 30% in the experiments, the results revealed no discernible influence on equilibrium 18O fractionation in the CO$_2$–H$_2$O system. These outcomes contribute to fundamental understanding of vital effects on δ^{18}O values of biogenic CaCO$_3$.

vi