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ABSTRACT. Tunas are extensively distributed throughout world’s oceans and grow and reproduce fast enough
to support one of the world's largest commercial fisheries. Yet they are apex predators living in the energy
depauperate pelagic environment. It is often presumed that tunas evolved their specialized anatomy, physiology,
and biochemistry to be capable of (a) high maximum swimming speeds, (b) high sustained swimming speeds,
and/or (c) very efficient swimming, all of which help account for their wide distribution and reproductive
success. However, a growing body of data on the energetics and physiological abilities of tunas do not support
these assumptions. The three things demonstratively “high performance” about tunas, and probably other
pelagic species such as marlin (Makaira spp. and Tetrapturus spp.) and dolphin fish (Coryphaena spp.), are (a)
rates of somatic and gonadal growth, (b) rates of digestion, (c) rates of recovery from exhaustive exercise (i.e.,
clearance of muscle lactate and the concomitant acid load). All of these are energy consuming processes
requiring rates of oxygen and substrate delivery above those needed by the swimming muscles for sustained
propulsion and for other routine metabolic activities. [ hypothesize that the ability of high performance pelagic
species (tunas, billfishes, and dolphin fish) to deliver oxygen and metabolic substrates to the tissues at high
rates evolved to permit rapid somatic and gonadal growth, rapid digestion, and rapid recovery from exhaustive
exercise (abilities central to success in the pelagic environment), not exceptionally high sustained swimming
speeds. comp BIOCHEM pHYsIOL 113A;1:3-15, 1996.

KEY WORDS. Tunas, billfish, marlin, energetics, swimming, skipjack tuna, yellowfin tuna, mahimahi,

ISSN 0300-9629/96/$15.00
SSDI 0300-9629(95)02064-0
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INTRODUCTION

Tunas (family Scombridae, subfamily Scombrinae, tribe
Thunnini) (77) are distributed in the world’s oceans from
~40°N to =40°S, and from the surface down to =400 m
(71,108,113). Tunas therefore occupy (in terms of volume)
one of the largest habitats on the planet. Tunas also support
one of the world's largest commercial fisheries landing roughly
2-3 x 10° kg annually (71). Tunas have reproductive and
growth rates capable of sustaining this level of fisheries mortal-
ity (plus high natural mortality) (89) even though they are top
level carnivores living in an energy depauperate environment
where patches of forage are widely scattered (8,109). If evolu-
tionary success is defined as equal to reproductive success (i.e.,
the ability to grow and reproduce), tunas must be considered
an extremely successful group. Two questions that have guided
my research for a number of years are (a) “What anatomical,
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physiological, and biochemical abilities permit this extreme
evolutionary success?” and (b) “How do the physiological abil-
ities of tunas (and other high performance pelagic species) act
and interact to limit their movements, oceanographic distri-
bution and vulnerability to specific fishing gears?” It is the
purpose of this paper briefly to review what I have learned so
far and suggest directions for future research.’

Tunas appear to be highly streamlined. Their bodies are
fusiform (i.e., elongated egg shaped), which presumably mini-
mizes both form and friction drag (42,82,122). Their paired
fins fold flat against the body surface, and the first dorsal fin
can be completely retracted into a slot (122). The surface of

ITo keep this review a reasonable length, “the tunas” are treated as a
relatively homogeneous group of species, although clearly they are not. Differ-
ences appear especially pronounced between the tropical (e.g., skipjack tuna,
Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares) and the temperate
species (e.g., bluefin tunas, Thunnus thynnus and T. maccoyi) (52,72). Most
of the data presented are from skipjack and yellowfin tunas simply because
they are the most studied. | have also purposefully excluded an extensive
discussion of the advantages conferred by the body and cranial endothermy
of tunas and billfishes because this topic has been comprehensively reviewed
by Block (9) and Block and Finnerty (10).



the eyes, although large, are flush against the sides of the
head. Their caudal peduncle is narrow with axe blade-like
keels on either side, an adaptation that presumably minimizes
resistance to lateral movement and disturbance to the water
stream flowing over the tail (122). Tunas have stiff, large
semi-lunate (i.e., high aspect ratio) tails which produce high
thrust at minimum drag (82). Tunas also possess a series of
finlets behind their second dorsal and anal fins. Although
their exact function is not known, the finlets may act as flow
fences which direct water flow over the tail and reduce form
drag by preventing boundary layer separation (122,82).

Tunas have lost the ability to pump water over their gills
by opercular and buccal movements and are, therefore, obli-
gate ram ventilators (103). This also may reduce hydrody-
namic drag and lessen the energetic costs of ventilation
(122,110). Tunas have internalized the red muscle fiber por-
tions of their myotomes (i.e., those fibers used for sustained
swimming) and possess vascular counter-current heat ex-
changers to maintain red muscle fiber temperatures signifi-
cantly above ambient (37,34,52). Tunas’ red muscle fibers
contain elevated myoglobin levels (27). Elevated temperature
and high myoglobin levels increase the rate of oxygen diffu-
sion from the capillaries to the mitochondria (111). Internal
placement may also enhance the mechanical performance of
the red muscle fibers (9,10). Tunas have gill surface areas
approximately an order of magnitude larger, and gill thickness
approximately an order of magnitude less, than other active
teleosts such as rainbow trout (62,63,64). They also have
ventricle masses and cardiac outputs roughly four to five times
larger than those of other active fishes (19,32). Billfishes (fam-
ily Istiophoridae) and dolphin fishes (family Coryphaenidae),
although much less studied, also appear to be high perfor-
mance pelagic species and share anatomical and physiological
characteristics with the tunas (122,94,90,40). There are,
however, significant differences in muscle anatomy, biochem-
istry, and swimming modes between tunas and billfishes
(10,44).

Based primarily on the anatomy of tunas, three characteris-
tics would seem obvious. Tunas (and perhaps also billfishes

and dolphin fishes) should be capable of:

1. exceptionally high maximum swimming speeds,
2. exceptionally high sustained (i.e., cruising) speeds,
3. very efficient swimming.

Indeed, much has been written about the unique abilities and
exceptional swimming performance of tunas and other large
pelagic fishes (e.g., 122,34,52,82,111,9,10,41,42).

Research on live subadult skipjack (Katsuwonus pelamis) and
yellowfin (Thunnus albacares) tunas in held in captivity (con-
ducted mostly at the National Marine Fisheries Service'’s Ke-
walo Research Facility, Honolulu, HI, USA), however, casts
doubt on the first two conclusions and shows the third may
be valid only under a very specific definition of the term “effi-
ciency.” In this review I will briefly discuss the evidence that
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is counter to the above hypotheses, then describe the aspects
of tuna, billfish, and dolphin fish biology which I consider to
be clearly “high performance” and truly unique among the
teleosts. Mention should be made however that, because of
their extremely large size, the physiology of adult tunas (and
billfishes) is almost unstudied. It is possible that many of the
conclusions I draw here may not hold for adult fishes. The
recently constructed Tuna Research and Conservation Center
(a joint project of Stanford University’s Hopkins Marine Lab-
oratory and the Monterey Bay Aquarium), with its ability
to hold adult tunas, and the advanced ultrasonic telemetry
techniques being developed at the Monterey Bay Aquarium
Research Institute to study tunas and other large pelagic fishes
in the open ocean, may eventually remedy this situation.

DISCUSSION
Maximum Swimming Speeds

Maximum swimming speeds are limited by the duration of
the contraction-relaxation cycles of the swimming muscles.
In other words, fish can complete a tail beat cycle no faster
than the muscles on opposite sides of the body can contract
and relax. Maximum tail beat frequencies (F,) can be calcu-
lated from the time required to reach maximum contraction
(T ) measured in isolated muscle blocks (124).

Fi=1-(2Tp)™ 89

Maximum swimming speed (U,,,) can, in turn, be estimated
from maximum tail beat frequencies and stride lengths (SL;
i.e., the distance moved per tail beat cycle usually expressed
as fractions of a body length) (124)

Unax = SL+ (2 Tppp) ™1 (2)

As shown in Fig. 1 (upper panel), isolated white muscle blocks
from skipjack tuna (Katsuwonus pelamis) are not capable of
exceptionally high rates of contraction when compared to
other equal sized teleosts and corrected for differences in
measurement temperatures (21). Skipjack tuna are capable of
maximum tail beat frequencies higher than those of the other
species only because their muscles operate at higher tempera-
tures (i.e., skipjack tuna usually occupy the surface waters of
warm tropical oceans). Tuna stride lengths are =0.7-0.8 body
lengths per tail beat (132,82,22,104,42), which match those
of many other fishes (121). Predicted maximum burst speeds
of skipjack tuna (Fig. 1, lower panel), therefore, are not ex-
ceptional if compared to other active teleosts at similar body
sizes and muscle temperatures (21,121).

Wardle and Videler (127) have shown that it is hypotheti-
cally possible for tunas to reach exceptionally high maximum
burst speeds by doubling their stride lengths. However, there
are yet no data showing that tunas do indeed have this ability.
The maximum speeds of yellowfin tuna claimed by Walters
and Fierstine (123) require unrealistically high muscle con-
traction speeds (128) and/or stride lengths (121). Others have
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FIG. 1. Effect of temperature on the time for isolated muscle
blocks to reach maximum contraction (upper panel) and pre-
dicted maximum swimming speeds (lower panel) of plaice
(Pleuronectes platessa), lemon sole (Micorstomus kitt), cod
(Gadus calarias), mackerel (Scomber scombrus), and skipjack
tuna (Katsuwonus pelamis). Figure redrawn from data pre-
sented in Wardle (126) and Brill and Dizon (22).

argued that tunas may reach exceptionally high burst speeds
because the temperatures of the white fiber muscle portions
of the myotomes may be elevated significantly above ambient
temperature (34,52,55,42). Thermal profiles of muscle (23)
and telemetered muscle temperatures (20) show that in 2 kg
skipjack tuna the temperature of the bulk of the white muscle
portions of the myotome is not significantly elevated, even
when the fish are chased to exhaustion and red muscle temper-
atures have increased from ~2°C to ~8°C above ambient
temperature.

In summary, a statement in a recent book on fish swimming
by Videler (121) seems appropriate “. . . estimates of maxi-
mum speeds of the fastest fishes desperately need confirmation
by actual measurements.” Moreover, I feel that the interesting
question is not “How do tunas reach exceptional maximum
burst swimming speeds?” because indeed they may not.

Rather, questions relating to factors that limit maximum rates
of muscle force development and why maximum rates of force
development appear the same in a wide variety of teleosts
would seem more fertile.

Maximum Sustained Swimming Speeds
Although Jeff Graham and colleagues (57,58,41,42,43,53,79)

have met with remarkable success studying several species of
tunas swimming in a large (3000 1 volume) water tunnel, the
maximum sustained swimming speeds of tunas are yet to be
directly measured. Mathematical models of maximum oxygen
extraction rates from the ventilatory water stream (Fig. 1) and
maximum rates of oxygen delivery to tissues (78) attainable
by tunas’ cardio-respiratory systems both predict that the max-
imum sustained speeds of 1.5-2 kg skipjack and yellowfin
tunas (Thunnus albacares) are in the range of 2 to 4 body
lengths - s™! (Fig. 2). These speeds are not exceptionally
above the maximum sustainable swimming speeds of other
active teleosts (121), and are well below the exceptionally
high sustained speeds of tunas (10 body lengths - s~!) claimed
by some authors (e.g., 122,133,82).

A summary of sustained swimming speeds determined by
following fish carrying ultrasonic transmitters in the open
ocean (28) also showed that tunas are not exceptional, but
rather have maximum sustained speeds similar to those of
other fishes (=3—5 body lengths - s7%, 121) and in the range
predicted by the mathematical models of Bushnell and Brill
(29) and Korsmeyer et al. (78). Furthermore, speed measure-
ments determined by the distances covered by fish carrying
ultrasonic telemetry devices in a given time period are compli-
cated because what is really measured is speed over ground,
not swimming speed (i.e., speed relative to the water). Brill
et al. {24) have shown that, for striped marlin (Tetrapturus
audax) at least, speed over ground and direction can be
strongly influenced by oceanic currents (i.e., speed over
ground and swimming speed may be significantly different).
The same could be expected for tunas. Direct measurement of
the maximum sustained speeds of tunas are, therefore, clearly
needed.

The red muscle fiber portions of the myotomes of tunas
(those responsible for powering sustained swimming, 22) do
have several unusual characteristics. One, the bulk of red
fibers are internal and adjacent to the spinal column, rather
than laterad and against the body surface as in other fishes
(75,56,9). Two, their temperatures are maintained signifi-
cantly above ambient due to the presence of vascular counter-
current heat exchangers that break the inevitable linkage of
muscle metabolic heat production and gill heat loss occurring
in other teleosts (36,112,20). Three, the red muscle fiber
portions of the myotomes of tunas have elevated myoglobin
levels (=18—35 mg - g~*, 86,27,45) compared to other fishes
(=4-15 mg - g~!, 27,45). Four, the capillarity of tuna red
muscle fibers is significantly elevated (84) compared to that
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FIG. 2. Oxygen demands (solid line) and predicted maximum rates of oxygen extraction from ventilatory water stream (i.e.,
“supply,” dashed lines) by the cardio-respiratory systems of skipjack tuna (upper panel) and yellowfin tuna (lower panel). Data
for oxygen demand were taken from Boggs (11) and Dewar and Graham (41), and for oxygen supply from Bushnell and Brill
(29). Values are based on 48 cm (fork length, 2.1 kg) skipjack tuna and 51 cm (2.2 kg) yellowfin tuna. ““Gape” refers to tunas’
cross-sectional mouth area which is a prime determinant of ventilation volume in these obligate ram ventilating fishes.
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seen in more sluggish species like carp (68), although it is not
the highest seen in fishes (69,85).

Elevated temperatures, high myoglobin levels, and high
capillarity are clearly adaptations for increasing rates of oxygen
delivery. If tunas are so highly streamlined why would they
need adaptations apparently directed at increasing maximum
rates of aerobic energy production in the red muscle portions
of the myotomes? Low drag and high rates of aerobic energy
production in the red muscle portions of the myotomes should
combine to give tunas highly elevated maximum sustained
speeds. Indeed, Stevens and Carey (111) have argued that
these adaptations enable tunas to have maximum sustained
swimming speeds well above those of other teleosts. However,
(as already mentioned) these are yet to be routinely observed
either in the field or in tunas swimming in a water tunnel
(28,57,58,41,42).

[ therefore propose an alternative explanation for the ele-
vated temperatures, high myoglobin levels, and high capillar-
ity of tuna red muscle fibers. They ensure that the red muscle
fiber portions of the myotomes never function anaerobically
(i.e., never accumulate an oxygen debt). Because tunas are

obligate ram ventilators, they depend on continuous forward
motion to force water over their gills. [They are also nega-
tively buoyant and must maintain minimum swimming speeds
to keep from sinking (i.e., maintain hydrostatic equilibrium)
(83). Minimum hydrostatic equilibtium speeds appear to be
above those needed for gill ventilation, however (29).] Be-
cause tunas must maintain a constant forward velocity, the
red muscle fibers which power sustained swimming function
in a way analogous to cardiac muscle, another muscle that
contracts continuously throughout life. Interestingly, tuna red
muscle fibers have a mitochondrial volume density per capil-
lary length and capillary volumes similar to those seen in
mammalian cardiac muscle (85).

Swimming Efficiency

Tunas, at all sustainable speeds, have metabolic rates above
those of other similarly sized active teleosts (e.g., sockeye
salmon, Oncorhynchus nerka) swimming at equivalent speeds,
even when the data are corrected for temperature differ-
ences (Fig. 3). Moreover, Videler (121) has compiled data
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FIG. 3. Effect of swimming speed on metabolic rates of skipjack tuna, yellowfin tuna, albacore, and salmon. Speeds over which
data were collected are shown by solid lines. Data are from Brett (14), Gooding et al. (51), Boggs (11), Graham et al. (58) and
Dewar and Graham (41). The directly measured standard metabolic rates of skipjack tuna (solid circle) and yellowfin tuna (open
circle) are also plotted. SMR data are from Brill (17). Measurements for skipjack and yellowfin tunas were made at 23-25°C,

albacore at 13.5—18°, and salmon at 15°C.
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FIG. 4. The nondimensional cost of transport (at optimal swim-
ming speeds) for various teleosts including skipjack tuna. Data
were taken from Table 9.2 in Videler (121). Species names are
as follows: bluefish = Pomatomus saltatrix, cisco = Coregonus
artidii, goldfish = Carassius auratus, haddock = Melanogram-
mus aeglefinus, lake whitefish = Coregonus clupeaformis,
largemouth bass = Micropterus salmoides, rainbow trout =
Oncorhynchus mykiss, salmon = Oncorhynchus nerka,
sheepshead = Archosargus probatocephalus, skipjack tuna =
Katsuwonus pelamis, spotted seatrout = Cynoscion nebulosus,
striped bass = Morone saxatilis, striped burrfish = Chilomyct-
erus scoepfi.

on the energy demands of a wide variety of teleosts and cal-
culated the nondimensional cost of transport (Joules - New-
ton~! - m™!) at each species’ optimal swimming speed. This
is clearly the most unbiased way of comparing energetic costs
of transport in fishes. As shown in Fig. 4, the cost of transport
for skipjack tuna is above those of other teleosts. These data
imply that tunas: (a) are less efficient at converting chemical
energy to kinetic energy, (b) have caudal fins which are less
efficient at converting lateral motion to forward thrust, or (c)
experience high hydrodynamic drag in spite of what appears
to be obvious streamlining. None of these possibilities seems
likely to me. Rather, I postulate that the exceptionally high
standard metabolic rate (SMR, i.e., the metabolic rate at zero
overt muscular activity) of tunas is the explanation
(16,17,57,41) (Fig. 5). In other words, it is the elevated SMR
of tunas (Fig. 5) that accounts for their elevated active meta-
bolic rate (Figs. 3 and 4).

As also shown in Fig. 5, the SMR of dolphin fish (Cory-
phaena hippurus) is equivalent to those of both skipjack and
yellowfin tunas and much higher than that of salmon. (The
SMR of other large pelagic species such as billfishes is yet to
be determined.) Although the data for salmon were taken at
20°C, the 5°C temperature difference is unlikely to account
for the disparity, because the effect of temperature on SMR
has a Q,y of approximately two (87,17,131). SMR has been
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postulated to be set by the diffusing capacity of the respiratory
system, whole blood sugar concentration, the rate at which
the circulatory system can deliver substrates and oxygen to the
cells, and the rate of proton leak across inner mitochondrial
membranes (107,118,119,39,129,63,120,13,38). Whether
one or a combination of these factors causes the high SMR
of tunas and dolphin fish is still an open question.

I postulate, however, that the high SMR of tunas and dol-
phin fish are, in major part, a direct result of these species
having the large thin gills (i.e., high gill oxygen diffusion
capacity, see 99) necessary to achieve high maximum oxygen
extraction rates from the ventilatory water stream. In other
words, the ability to achieve high maximum oxygen extrac-
tion rates from the ventilatory water stream is linked to high
SMR because the necessary large thin gills engender high os-
moregulatory costs (i.e., high SMR). As shown in Fig. 6,
SMR and gill surface areas appear correlated for a number
of teleost and elasmobranch fishes. Calculated and measured
values for the cost of osmoregulation for fish in seawater range
from approximately 10-30% of the SMR (102,91, 74). Calcu-
lating the cost of osmoregulation requires data on drinking
rates, unidirectional sodium efflux, and branchial potential
difference (74). None of these have been measured in tunas
or dolphin fish, nor has the cost of osmoregulation. Osmoregu-
latory costs can be estimated based on the metabolic rate of
isolated gills, because the gills are the main sites of active salt
extrusion. Clearly, the metabolic rates of isolated gills from
tunas, billfish, and dolphin fish needs to be measured, as has
been done for cod (Gadus morhua) (67).

Tunas have 30-80% more mitochondrial protein per gram
of muscle tissue than carp, Cyprinus carpio, due to densely
packed mitochondrial cristae (88). Tunas also have excep-
tionally high cardiac outputs [115—132 ml min~! kg~ in para-
lyzed skipjack and yellowfin tunas versus 18 ml min~! kg™!
for resting rainbow trout (19,32)]. Admittedly, these other
adaptations for achieving high maximum oxygen extraction
rates from the ventilatory water stream and high rates of ATP
production may also contribute to high SMR.

There is one aspect of swimming where tunas may be
unique. That is the rate of increase in oxygen demand with
increasing swimming speed. Data from Gooding et al. (51),
Graham et al. (58), and Dewar and Graham (41) show that
the rate of increase of oxygen demand with speed appears less
in yellowfin tuna and albacore (Thunnus alalunga) than in
sockeye salmon (14) (Fig. 3). If the rate of increase in meta-
bolic rate with swimming speed is used as the definition of
“swimming efficiency,” than these tunas appear more “effi-
cient” than other teleosts. Measurement of energy demands
in skipjack and yellowfin tunas made by Boggs (11), however,
imply that the rates of increase in metabolic oxygen demand
with speed are the same in tunas and salmon (Fig. 3). The
reasons for the disparity in the tuna metabolic rate data sets
were explained by Boggs and Kitchell (12) as an artifact due
to differences in measurement techniques. Boggs’ (11) and
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FIG. 5. The standard metabolic rates of skipjack tuna, yellowfin tuna, kawakawa, dolphin fish, (all measured at 25°C) and salmon
(measured at 15°C). Data are from Brett (14), Brill (16), Brill (17), and Benetti et al. (7).

Brett’s (14) models reflect the lower end of a range of possible
metabolic rates at any speed whereas Gooding et al. (51),
Graham et al. (58), and Dewar and Graham (41) all use the
full range of metabolic rates measured at each speed. These
discrepancies clearly need further scrutiny.

What Characteristics of Tunas, Billfishes,
and Dolphin Fishes Are “High Performance’’?

The three things that I feel are demonstratively “high speed”
or “high performance” about tunas, billfishes, and dolphin
fishes are:

1. rates of somatic and gonadal growth,

2. rates of digestion,

3. rates of recovery from exhaustive exercise (i.e., rates clear-
ance of muscle lactate and the concomitant acid load).

[ will examine each separately. There are, however, less data
on these abilities of pelagic fishes than on those just discussed.

Rates of Somatic and Gonadal Growth

As clearly shown in Fig. 7, absolute rates of growth of skipjack
tuna, yellowfin tuna, dolphin fish, and Pacific blue marlin
(Makaira nigricans) are different, but all still clearly exceed
those of other teleosts. (Chinook salmon, Oncorhynchus
tshwytscha, was arbitrarily chosen as an example, other salmo-
nids show similar growth rates [15].) Skipjack tuna grow more
slowly than yellowfn tuna or Pacific blue marlin, and reach
much smaller maximum sizes (=22 kg, =150 kg, and >700
kg, respectively), apparently because of energetic constraints
(60,76).

There are some data that imply rates of gonadal synthesis
are high in tunas, although comparing rates of gonadal synthe-
sis is more difficult than comparing rates of somatic growth.
Yellowfin tuna, skipjack tuna and black skipjack tuna {Euthyn-
nus lineatus) spawn a volume of eggs equivalent to up to
=~1-3% of the body mass every one to two days during a
three-month spawning season (65,105,106). For yellowfin
tuna, this represents an annual energetic investment in repro-
duction of approximately 16% of total energy income (106)
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= Ictalurus punctatus, dolphin fish = Coryphaena hippurus, hammerhead shark = phyrna lewini, largemouth bass = Micropterus
salmoides, mako shark = Isurus oxyrinchus, salmonids = Oncorhynchus spp, pike = Exox lucius, skipjack tuna = Katsuwonus
pelamis, walleye = Stizostedion vitreum vitreum, yellowfin tuna = Thunnus albacares.

iation) in approximately 5—12 hr. Other similarly sized te-
leosts (held at 18—25°C) require 25-40 hr (81).

which is roughly equivalent to that seen other teleosts (130).
The energy income of tunas is, however, well above those of
other teleosts (92). Expressed another way, Schaefer (106)
estimates that yellowfin tuna spawn an equivalent of 3.5 times
their body weight per year, which represents 2.5 times the
energy allocated to somatic growth.

Rates of Recovery From Exhaustive Exercise

Skipjack tuna chased to exhaustion achieve some of the high-
est white muscle lactate levels found in vertebrates (up to
100-150 wmoles - g~!, 59,2). Other teleosts (e.g., rainbow
trout, winter flounder (Pseudopleuronectes americanus), plaice
(Pleuronectes platessa)) reach maximum white muscle lactate
levels of only =15-40 umoles - g~' (125,93). Yet, tunas

Rates of Digestion

Yellowfin, skipjack and black skipjack tunas have rates of di-
gestion (i.e., inverse of the time required for gastric evacua-

tion) from two to five times higher than those of other pis-
civorous species when comparisons are made to other fishes
of equal body size held at equivalent water temperatures
(81,104,92). For example, 1.6-3.0 kg tunas held at 24-29°C
reach 100% gastric evacuation {following being fed to sat-

show rates of lactate clearance and recovery of blood acid-base
status much faster than other teleosts. In skipjack and vyel-
lowfin tunas, recovery to pre-exercise white muscle lactate
and glycogen levels and blood acid-base balance may be com-
pleted in two hours (3,100,2). In other teleosts, recovery from
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salmon. Data were taken from Uchiyama and Struhsaker (117), Uchiyama et al. (116), Prince et al. (101) and Cadwallader and

Eden (33).

lower muscle lactate levels and lesser proton load takes two
to twelve times longer (125,93).

The Common Denominator—QOxygen Delivery
at Rates Above that Needed for Swimming and SMR

The common feature of somatic and gonadal growth, diges-
tion, and recovery from exhaustive exercise is that all are
energy-consuming processes and all require oxygen and meta-
bolic substrate delivery to the tissues at rates above those
needed by the swimming muscles and for other routine meta-
bolic activities (i.e., the SMR).

There are no data on the increase in metabolic rate follow-
ing feeding in tunas. Based on data from other species, how-

ever, it seems likely that feeding in tunas could cause a dou-
bling or tripling (66,1,80,70). The increase in oxygen
consumption is due to the burst of protein synthesis that fol-
lows feeding, more than the mechanical actions of the stom-
ach or gut required for digestion, or amino acid transport
(25,26). There are also no data on metabolic rates of tunas
recovering from exhaustive exercise. The highest metabolic
rates in skipjack tuna ever measured (2500 mg O, - kg 'h™!)
were, however, recorded from fish immediately after their cap-
ture from a feeding school (51). The fish were most likely
recovering from oxygen debt (i.e., metabolizing lactate) (61)
and/or showing increased metabolic rates due to recent
feeding.

Blueiin tuna (Thunnus thynnus) have vascular counter-
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current heat exchangers associated with their viscera and
maintain significantly elevated visceral temperatures presum-
ably to increase digestion rates (35). I hypothesize that high
digestion rates must be paired with high rates of protein syn-
thesis which, in turn, must be matched by high rates of oxygen
delivery, because protein synthesis is an energy consuming
process. Moreover, Pauly (97,98) has clearly demonstrated
that growth rates of a large number of teleosts are positively
correlated with gill surface areas, and that maximum growth
rates are limited by maximum oxygen delivery rates. In other
words, fishes like tunas with the largest gill surface areas (and
high maximum metabolic rates}) have the highest growth
rates. The situation is not as described by Olson and Boggs
(92) that “. . . many tropical pelagic predators [i.e., tunas,
billfishes, and dolphin} . . . grow rapidly in spite of high
metabolic rates . . .” but rather, as suggested by Boggs and
Kitchell (12), tunas grow rapidly because of their ability to
sustain high metabolic rates.

SUMMARY AND CONCLUSIONS

[ hypothesize that the ability of tunas (and probably other
pelagic species) to deliver oxygen and metabolic substrates to
the tissues at high rates evolved to permit high rates of gonadal
and somatic growth, rapid digestion, and rapid recovery from
exhaustive exercise, not exceptionally high sustained cruising
speeds. Indeed, the uniqueness of the anatomy (e.g., high
capillarity) and biochemistry (e.g., level of substrate trans-
porters, myoglobin levels, LDH activity) of the white muscle
and gut of tunas appears to support this hypothesis (45). Fu-
ture research on tunas should, therefore, probably not concen-
trate on “how” or “why” tunas are “high speed” or “efficient”
swimmers, because the data summarized here clearly implies
they are not. Rather, future investigations should concentrate
on actually measuring the maximum aerobic metabolic rates
of various tuna species. I suspect these will not necessarily be
observed in fish swimming at their maximum sustainable
speeds, but rather in tunas recovering from exhaustive exer-
cise, or following feeding to satiation, or both. Future studies
could also be fruitfully directed at determining which factors
limit maximum rates of oxygen uptake in tunas as has been
done for mammals (e.g., 46,47) and how tunas are able to
reach their very high maximum metabolic rates (i.e., rapidly
extract large quantities of oxygen from a high ventilation vol-
ume, deliver substrates and oxygen to the tissues at high rates,
etc.) (e.g., 78,79).

Finally, there is some evidence that tunas’ unique abilities
may actually effect their movements and depth distribution.
It appears tuna hearts may function in ways more similar to
those of mammals than to those of other teleosts, and that
tuna hearts have a more limited ability to increase stroke
volume than those of other fishes (49,73,115). The limited
ability to increase stroke volume may, in turn, limit tunas’
ability to withstand reduced ambient oxygen, with its accom-

R. W. Brill

panying bradycardia, because the limited increase in stroke
volume is not sufficient to offset reductions in heart rate, as
it is in other teleost (e.g., 50,31,30). This inability to tolerate
lowered ambient oxygen appears, in turn, to significantly in-
fluence tunas’ depth distributions and may limit their vertical
movements (18).

This manuscript is dedicated to the late Dr. Frank Carey whose accom-
plishments, friendship, generosity, and gentle sense of humor inspired,
guided, motivated, and continually impressed several generations of pelagic
fish biologists—including me. I suspect, however, he would think this paper
is “full of it.” I thank Chris Boggs and Kurt Schaefer for providing helpful
reviews of early drafts.

This paper is funded in part by Cooperative Agreement #NA37RJ0199
from the National Oceanic and Atmospheric Administration. The views
expressed herein are those of the author and do not necessarily reflect the
view of NOAA or any of its subagencies.
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