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Environmental context explains Lévy and Brownian
movement patterns of marine predators
Nicolas E. Humphries1,2, Nuno Queiroz1,3,4, Jennifer R. M. Dyer1, Nicolas G. Pade1,4, Michael K. Musyl5,
Kurt M. Schaefer6, Daniel W. Fuller6, Juerg M. Brunnschweiler7, Thomas K. Doyle8, Jonathan D. R. Houghton9,
Graeme C. Hays10, Catherine S. Jones4, Leslie R. Noble4, Victoria J. Wearmouth1, Emily J. Southall1

& David W. Sims1,2

An optimal search theory, the so-called Lévy-flight foraging hypo-
thesis1, predicts that predators should adopt search strategies
known as Lévy flights where prey is sparse and distributed unpre-
dictably, but that Brownian movement is sufficiently efficient for
locating abundant prey2–4. Empirical studies have generated con-
troversy because the accuracy of statistical methods that have been
used to identify Lévy behaviour has recently been questioned5,6.
Consequently, whether foragers exhibit Lévy flights in the wild
remains unclear. Crucially, moreover, it has not been tested whether
observed movement patterns across natural landscapes having
different expected resource distributions conform to the theory’s
central predictions. Here we use maximum-likelihood methods to
test for Lévy patterns in relation to environmental gradients in the
largest animal movement data set assembled for this purpose.
Strong support was found for Lévy search patterns across 14 species
of open-ocean predatory fish (sharks, tuna, billfish and ocean sun-
fish), with some individuals switching between Lévy and Brownian
movement as they traversed different habitat types. We tested the
spatial occurrence of these two principal patterns and found Lévy
behaviour to be associated with less productive waters (sparser prey)
and Brownian movements to be associated with productive shelf or
convergence-front habitats (abundant prey). These results are con-
sistent with the Lévy-flight foraging hypothesis1,7, supporting the
contention8,9 that organism search strategies naturally evolved in
such a way that they exploit optimal Lévy patterns.

Lévy flights are a special class of random walk with movement
displacements (steps) drawn from a probability distribution with a
power-law tail (the so-called Pareto–Lévy distribution)1,10, and give
rise to stochastic processes closely linked to fractal geometry and
anomalous diffusion phenomena7,11. Lévy flights describe a move-
ment pattern characterized by many small steps connected by longer
relocations, with this pattern having scale invariance under projec-
tion, such that the probability density function, P(lj), has a power-law
tail in the long-distance regime: P(lj) < lj

2m, where lj is the flight
length (step length of move j), and m, 1 , m # 3, is the power-law
exponent. Lévy flights comprise instantaneous steps and hence
involve infinite velocities, whereas a Lévy walk10 refers to a finite-
velocity walk such that displacement is determined after a time t,
reflecting a dynamical process such as movement1,10,11. Lévy flights
and walks are theorized to be the most efficient movement pattern

for locating patchy prey in low concentrations on spatial scales
beyond a searcher’s sensory range, with an optimal search having a
power-law exponent of m < 2 (refs 4, 13). It is proposed that organ-
isms have therefore naturally evolved search patterns that can be
modelled as optimal Lévy flights1,7,13.

However, burgeoning empirical support for this hypothesis
recently foundered following studies suggesting methodological
shortcomings in the estimation of power-law exponents and in deter-
mining the goodness of fit to the data5,6,14–16, thus casting doubt on
some, if not all, of the empirical studies that used such methods8,9.
Hence, controversy remains over whether Lévy behaviour occurs in
nature6,9,17, despite many empirical studies1,18. Furthermore, long time
series of movements (over weeks to months) derived from animal-
attached electronic tags will very probably capture complex move-
ment data resulting from different types of behaviour (for example
searching, travelling and resting) as animals respond to various biotic
and abiotic factors over time. Previous studies analysing movement
data6,12,13 on free-ranging animals for Lévy motion used data collected
over long time periods and different habitat types, without giving
sufficient consideration to the issue of there being different types of
behaviour interspersed within the time series. The lack of analysis of
separate behaviour-pattern types may be at least one reason why
evidence for Lévy flights in animal behaviour has proved challenging
to detect unequivocally9,17.

Here we present an analysis of the largest data set of recorded
movements (n 5 12,294,347 steps) assembled to test the Lévy-flight
foraging (LFF) hypothesis1 using statistical methods (maximum-
likelihood estimation (MLE) and Akaike information criteria (AIC)
weights for model comparisons) that are considered robust and
accurate6,14–16. To test the predictions of the LFF hypothesis, we
focused our analysis on vertical movement data recorded over 5,700
days using electronic tags attached to open-ocean predators (sharks,
tunas, billfish and ocean sunfish; Methods and Supplementary
Table 1). These species may be among those most likely to exhibit
Lévy behaviour because they occupy unpredictable and depauperate
environments with highly patchy prey distributions13, where Lévy
motion is proposed to increase new-patch encounter probability19.

To allow for a more robust test of the LFF hypothesis, long and
complex time series of vertical diving movements (hereafter tracks,
or sections) undertaken as fish moved horizontally across their
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ranges were divided into shorter sections using a split moving-
window analysis20 (Supplementary Information, sections 1.2 and
1.3) to identify discontinuities in the pattern of vertical space use
that represent transitions from one pattern of space use to another. In
total, tracks from 55 individuals across 14 species (shark, eight
species; tuna, two; billfish, three; ocean sunfish, one) were divided into
129 sections. MLE methods16 were used to fit three models (power law,
truncated power law (truncated Pareto) or exponential) to the
observed move step-length frequency distributions (Supplementary
Information, section 1.4). Sections that from visual inspection proved
to be poor fits to all candidate distributions were excluded from further
analysis (n 5 35), because our objective was to test the spatial occur-
rence of good fits to step-length distributions. MLE methods with AIC
weights6,15 were then used to determine model best fits for the remain-
ing 94 sections. Because movements can only take place in finite space
(moves are limited by, for example, the sea surface, the sea bed or the
range edge), which leads to upper cut-offs in the move step-length
frequency distribution, only truncated Lévy walks are biologically
plausible1. Therefore, our principal intention was not to find which
kinds of all possible probability distributions best fit the data; rather, it
was to test between truncated Lévy (truncated power-law model) and
Brownian-type (exponential model) movement patterns.

We found clear and persistent signals of Lévy and Brownian
motion; of the 94 sections analysed statistically (MLE with AIC
weights), one section was best fitted by a pure power law (Fig. 1a–c)
and 60 sections were best fitted by a truncated Pareto–Lévy distri-
bution (see, for example, Fig. 1d–f and Supplementary Table 3) with
exponents in the Lévy range, 1, m # 3, and so were consistent with
Lévy behaviour. The mean m value for the Lévy sections was 1.94 (s.d.,
0.43; n 5 61), which is close to the proposed optimum, mopt < 2 (refs
1, 2, 4). Six sections best fitted by a truncated power law yielded
exponents outside the Lévy range.

Lévy searching in open-ocean predators therefore seems to be not
only present but prevalent; however, it does not seem to be a universal
pattern, explaining all movements, nor does it occur in all individuals
at all times (it occurs in only 47% of sections). A logical extension of the
hypothesis is that other movement behaviour types intersperse Lévy
patterns. In support of this, we found that 27 sections (21%) were best
fitted by an exponential model describing normal random processes
(Brownian motion; Supplementary Table 3) that under the LFF hypo-
thesis are consistent with optimal searches where prey is abundant1. We
also found that 35 sections (27%) were poorly fitted by all of the
distributions; this was perhaps because the sections comprised many
different movement patterns, making them too complex for the stati-
stical methods used here (Supplementary Information, section 1.5).

To investigate the environmental context of different behaviour
patterns, we mapped the horizontal tracks of individual predators in
the Atlantic or the Pacific ocean to determine in which types of habitat
the sections showing Lévy and Brownian vertical movement patterns

occurred. For example, in productive waters of the equatorial conver-
gence front of the central North Pacific, the entire track of a silky shark
(Carcharhinus falciformis) was best fitted by an exponential model,
whereas for another silky shark tracked farther north in oligotrophic
waters, the best fit was a truncated power law with an exponent of 2.02,
close to the theoretical optimum for Lévy movement, mopt < 2 (Sup-
plementary Information, section 2.1, and Supplementary Table 4).

We found that different model fits occurred between different
habitat types of the same individual for eight other individuals of
five species of predator (bigeye (Thunnus obesus) and yellowfin
(Thunnus albacares) tuna, and blue, basking (Cetorhinus maximus)
and whale (Rhincodon typus) sharks; see Supplementary Table 4 for
model comparisons). For example, a blue shark tracked moving
south in the northeast Atlantic, from the highly productive shelf
habitat of the western English Channel to the less productive, deep
water of the Bay of Biscay, showed switches in the pattern of its
vertical movement (Fig. 2a–e). The shark showed diving behaviour
in tidal front waters on the shelf (0–200-m depth) that was well fitted
to the distribution’s tail by an exponential model (Fig. 2a, f, k and
Supplementary Table 4). Moving off-shelf into less productive waters
(with well-developed thermal stratification) (Fig. 2m, p, q), the
shark’s vertical movements down to 700 m conformed well to a
truncated power law with an exponent of m 5 2.19 (Fig. 2b, g, l),
before its diving movements shifted to a pattern better approximated
by an exponential fit when in colder, shelf-edge habitat in the southern
Bay of Biscay (Fig. 2c, h, m). Returning to warmer, well-stratified but
less productive open-ocean habitat (Fig. 2d, e, n, o, q), this shark once
again exhibited vertical movements best fitted by truncated power
laws with m 5 1.97 and 1.99 (Fig. 2i, j).

A bigeye tuna in the central eastern Pacific near the Galapagos
Islands switched several times from diving movements best fitted
by a truncated power law when in warmer, stratified waters to move-
ments approximated by an exponential model in colder waters of
the equatorial convergence front (Supplementary Information, sec-
tion 2.2).

These results agree with the prediction of the LFF hypothesis that
Lévy behaviour should occur in environments where prey is sparsely
distributed but that Brownian motion is theoretically optimal where
prey is abundant3. To test the significance of this with our habitat-
mapped data, we compared the frequency of sections that conformed
to this broad prediction. We assumed that prey in open-ocean
habitats with lower primary21 and secondary production22 was likely
to be more sparsely distributed than that in more productive shelf,
frontal and convergence-zone habitats, where prey of the predators
we tracked is known to be more abundant22–25. We used only geo-
referenced sections yielding best fits where the step-length data
spanned at least 1.5 orders of magnitude (range, 1.53–2.27).

For four species of predator (three sharks and ocean sunfish) in the
northeast Atlantic that moved between continental-shelf areas with
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Figure 1 | Examples of good fits to power-law
and truncated power-law distributions.
a, Synthetic power-law and truncated power-law
(Pareto) distributions with upper truncations set
to 50, 250, 5,000. b–f, Empirical power-law and
truncated power-law fits to dive data from
individual blue sharks (Prionace glauca; b, d) and
an ocean sunfish (Mola mola, e), together with
the diving time series for the individual in b (over
,8 d; c) and the individual in e (over ,4 d; f). The
red line indicates a synthetic power law in a, a
power law in b and truncated power-law MLE
model fits to empirical data in d and e.
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high surface zooplankton abundance and open-ocean areas with
lower abundance22, which provide proxies for prey-abundant and
prey-sparse environments, respectively, 14 mapped sections were
available. Movement patterns in 12 sections performed as proposed
(sparse prey, Lévy behaviour; abundant prey, Brownian motion)
(chi-squared test with Yates’s correction for continuity: x2 5 5.78,
x2

0:05,2 5 3.84, P , 0.025; Fig. 3a). This indicates that the frequency of
observed movement patterns approximated by a Lévy distribution
in less productive areas and by an exponential (Brownian) distri-
bution in more productive waters did not deviate significantly from

theoretical predictions of the LFF hypothesis1,4. For bigeye and
yellowfin tuna in the central eastern Pacific moving between warm
stratified waters and cooler, more productive convergence-front
waters (Supplementary Information, sections 2.2 and 2.3) there were
21 sections for analysis. A higher number of sections best fitted by an
exponential distribution occurred in convergence-front waters than
in stratified waters (x2 5 4.00, x2

0:05,2 5 3.84, P , 0.05; Fig. 3b).
Therefore, the occurrence of Brownian-type behaviour in tuna in
the Pacific agrees with predictions of the LFF hypothesis. The number
of sections where movements conformed to a truncated power law
was the same in convergence-front waters as in stratified waters. We
speculate that one reason tuna in the productive convergence zone
exhibit Lévy movements characterized by longer vertical steps is that
fish prey may become spatially constrained within mesoscale eddy
features25 that are common in the region and have diameters of
between about 50 and 200 km. Thus, even in this productive environ-
ment, tuna movement may be optimized by longer vertical reorien-
tations (searching) between eddies because prey hot spots may be
patchily distributed across a wide range of scales linked to turbulent
eddy formation, size and persistence26 (Supplementary Information,
sections 2.2 and 2.3).

Our analysis provides the strongest evidence yet for Lévy behaviour
in diverse animals ranging across natural landscapes. Furthermore, the
movement patterns of some individuals approximated theoretically
optimal Lévy searches. It was also evident, however, that Lévy beha-
viour is not a universal pattern; rather, some individuals use other
patterns approximated by normal random processes, sometimes inter-
spersed with Lévy movements. We found that mapping the locations of
where Lévy and Brownian movements occurred allowed a preliminary
field test of the LFF hypothesis, confirming theoretical predictions.
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Figure 2 | Behavioural switching between Lévy and Brownian motion in
relation to habitat type. a–e, Split moving-window analysis showing
significant discontinuities in the dive time series of blue shark 10. Red lines
indicate points where the time series was divided into sections (SEC1–SEC5).
f–j, MLE analysis with m values for sections best fitting a truncated power-
law distribution: black circles, observed step lengths; red lines, best-fit
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profiles of sea temperature recorded using electronic tags. p, q, Geo-
referenced track sections of blue shark 10 overlaid on chlorophyll a
concentrations (p) and bathymetry (q). Section numbers correspond to
those in a–e and different data-point colours correspond to different
sections: SEC1, black (higher latitude); SEC2, white (higher latitude); SEC3,
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Therefore, not only do our results lend strong support to the conten-
tion that Lévy flights occur in free-ranging animals, but our observa-
tions of pattern switching between Lévy and Brownian-type motion
suggest that searching animals adaptively adjust their optimal patterns
of movement to different environmental resource distributions. We
recognize, however, that our analysis could not detect how the move-
ment patterns arose, that is, whether the patterns identified were an
adaptive behaviour or whether observed patterns were an emergent
property of the spatial distributions of prey13,17,27. Controlled experi-
ments28, rather than natural experiments as here, will be needed to
progress from asking whether Lévy flights (walks) occur in animals8,9

to exploring why they occur and whether animals evolved such that
they exploit Lévy flights as an optimal search strategy for life in com-
plex, highly changeable landscapes. Simulations of biological evolution
indicate that varying environments posing complex goals can speed up
natural selection29, which also raises the question of when, if animals
have evolved Lévy flight behaviour, did such a strategy first appear
among organisms.

METHODS SUMMARY
Study animals. Animal-attached electronic tags provided time-stamped depth

records (tracks) for 55 individuals from 14 species: bigeye thresher shark (Alopias

superciliosus), blue shark, shortfin mako shark (Isurus oxyrinchus), porbeagle

shark (Lamna nasus), silky shark, oceanic whitetip shark (Carcharhinus

longimanus), basking shark, whale shark, bigeye tuna, yellowfin tuna, black

marlin (Makaira indica), blue marlin (Makaira nigricans), swordfish (Xiphias

gladius) and ocean sunfish.

Track analysis. We used a split moving-window analysis to identify statistically

significant discontinuities in depth use and divided tracks into sections that were

considered more behaviourally consistent than the whole. Each of the 129 result-

ing sections was then corrected for sampling artefacts and converted from depths

to a series of vertical displacements (move step lengths).

MLE analysis and model selection. For each track section, parameters for

power-law, exponential and truncated Pareto distributions were calculated using
MLE16. We used plots of ranked move step length, combining empirical and best-

fit plots, to reject sections that were a poor fit to all distributions. Log-likelihoods

and AIC weights were calculated for the remaining sections and were used to

determine which distribution (model) best fitted the data.

Received 1 February; accepted 21 April 2010.
Published online 9 June 2010.

1. Viswanathan, G. M., Raposo, E. P. & da Luz, M. G. E. Lévy flights and superdiffusion
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