APPENDIX A

ANALYSIS OF FAUNAL MATERIAL FROM AN ARCHAEOLOGICAL SITE COMPLEX AT MANGILAO, GUAM

By

B. F. Leach
and
J. M. Davidson

This project was funded (or partly funded) by Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research (JIMAR) and the National Oceanic and Atmospheric Administration (NOAA). The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions.

Museum of New Zealand Te Papa Tongarewa
 Technical Report 38

Analysis of Faunal Material from an Archaeological Site Complex at Mangilao, Guam

Leach, B.F.
Davidson, J.M.
Honorary Research Associates, Museum of New Zealand, Te Papa Tongarewa

April, 2006

Not for citation without permission of the authors
This is an unrefereed report intended for limited distribution. Copies or further information may be obtained either from the senior author at the Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand; or from Micronesian Archaeological Research Services, A Guam Non-Profit Educational and Scientific Corporation, P.O. Box 22303 GMF, Guam, 96921 USA.

CONTENTS

ABSTRACT Page 1
INTRODUCTION Page 1
CURATORIAL DETAILS Page 1
METHODS OF FISH BONE ANALYSIS Page 8
BASIC RESULTS OF FISH BONE ANALYSIS Page 8
THE GENERAL CHARACTER OF FISHING AT MANGILAO SITE 25 Page 15
FISH REMAINS FROM SITES 253 AND 667 Page 20
CONCLUSIONS Page 20
REFERENCES CITED Page 20
APPENDIX: Detailed Results for Fish Analysis from Mangilao Page 22
Table 4: Mangilao Site 25 MNI All Assemblages Combined Page 22
Table 5: Mangilao Site 25 MNI For Four Time Periods Page 26
Table 6: Mangilao Site 25 MNI For Western, Central and Eastern Areas Page 30
Table 7: Mangilao Site 25 NISP by Taxon Page 34
Table 8: Mangilao Site 253 NISP by Taxon Page 35
Table 9: Mangilao Site 667 NISP by Taxon Page 36
Table 10: List of Identifications of Fish Remains from Mangilao Site 25 Page 37
Table 11: List of Identifications of Fish Remains from Mangilao Site 253 Page 44
Table 12: List of Identifications of Fish Remains from Mangilao Site 253 Page 45

ANALYSIS OF FAUNAL MATERIAL FROM AN ARCHAEOLOGICAL SITE COMPLEX AT MANGILAO, GUAM

Leach, B.F., and Davidson, J.M.
Archaeozoology Laboratory
Museum of New Zealand, Te Papa Tongarewa

Abstract

A collection of approximately 8,000 fish bones from an archaeological site complex at Mangilao on the island of Guam was analysed. Identifiable bones were found in 127 different assemblages. In total, these bones produced a Minimum Number of Individuals of 267 fishes (NISP=394). There were also a few bones of rats, birds and flying fox in the collections, but details of these are reported elsewhere.

The collections were examined for possible changes through time and from one area to another, without showing signs of significant variation.

Although 20 different families of fish are represented in these collections, all assemblages are dominated by fish belonging to the Scaridae family (parrotfish). This is similar to most other archaeological collections throughout the Pacific. Second in importance are fish belonging to the Coryphaenidae family (dolphinfish), and fifth in abundance are significant quantities of fish in the Istiophoridae/Xiphiidae families (swordfish and marlins). It is exceptional to find these species in archaeological sites in the Pacific; the bones from Mangilao are matched only in other sites in the Marianas chain of islands.

A few bones were found from at least 5 species which are not present in the comparative collection at the Archaeozoology Laboratory at the Museum of New Zealand.

Keywords: ARCHAEOLOGY, ARCHAEOZOOLOGY, FISH, GUAM, MARIANAS, DOLPHINFISH, SWORDFISH, MARLIN

INTRODUCTION

The results of the analysis of archaeological fish bone from numerous small excavations at Mangilao on the island of Guam are reported here.

The sites were excavated as part of mitigation during preparations for a golf course. The fish remains from these excavations were sent to the author by Micronesian Archaeological Research Services for identification using the comparative collection and other facilities at the Archaeozoology Laboratory, Museum of New Zealand. This report presents the results of this work.

Figure 1 shows the location of Guam at the bottom end of the Marianas chain of islands. Figure 2 is a map of Guam, and Figure 3 shows the area on Guam where the investigations were carried out. The three excavated sites from which fish bones were recovered are highlighted.

CURATORIAL DETAILS

On arrival at the Archaeozoology Laboratory all faunal material was re-bagged. Figure 4 shows a typical original bag containing the bones. This bag has numerous items of information written on

Figure 1: Map of the Mariana Islands with Guam at the extreme south

Figure 2: Plan of Guam. The Mangilao area is on the east coast

Figure 3: Map of the Mangilao Project area. Numbered locations are specific archaeological sites. Note the location of sites 25, 253 and 667.
it, which would be impossible to replicate many times as individual bones are removed, re-bagged, and identified. It is a fundamental curatorial procedure in archaeology never to destroy locational information relating to any item recovered. Fortunately, this information is available in a database (Excel files) held by Micronesian Archaeological Research Services, cross-referenced by a unique accession number which appears on each bag. In Figure 4 the bag is labelled \#2559. The database listing for \#2559 shows the following:

Catalogue Number	$\# 2559$
Site	25
Unit (Square)	420
Strat. (Layer)	IIIb

These details constitute the minimum information required for curation. In particular the Site, Square and Layer information constitutes a unique location in time and space known as an Assemblage. This assemblage is the unit used for calculation of MNI (minimum number of individuals during faunal analysis). For example, if one right dentary of Monotaxis grandoculis is found in one such assemblage, and a left dentary of Monotaxis grandoculis is found in another discrete assemblage, then this would count as $\mathrm{MNI}=2$ for this species. Conversely, if one right dentary of Monotaxis grandoculis is found in one such assemblage, and a left dentary of Monotaxis grandoculis is found in the same discrete assemblage, then this would count as $\mathrm{MNI}=1$ for this species, regardless of how big or small the two bones are. Clearly, the identification of what constitutes an assemblage is a very important matter during faunal analysis. Our usual procedure is to define one square metre of one individual layer as an assemblage and use that to define assemblages. In the case of the Mangilao collection, many of the Excavation Units (EUs or Squares) were one metre square, although others were larger than this.

Since the catalogue number was uniquely cross-referenced to Site, Square and Layer, using the database, this number is ideal to use during re-bagging, to ensure that locational information is not lost. It was therefore written on all bags during the re-bagging process to preserve original provenance information (See Figure 5). One bag, on which the accession number had been incorrectly transcribed, was excluded from the analysis.

Almost all of the fish remains derives from Site 25. In the body of this report, results are reported only for Site 25. In the Appendices, identifications are also given for bones from Site 253 and Site 667.

The bones in each original bag were tipped out in a sorting tray and sorted into basic categories: fish, bird, rat, flying fox, turtle, crustacea, and separately re-bagged in self-sealing plastic bags. The non-fish remains consist mainly of fragmented bones of rat and flying fox. There was also a considerable number of crustacean parts. In the case of fish remains, these were sorted into anatomical parts which are useful for identification to species, genera, or family, and separately rebagged, and the original unique catalogue number written on each bag. Unidentifiable fish remains were returned to their original bags. More than 90% of archaeological fish bones are fragments of vertebrae and spines, and not normally used for quantitative analysis. However, they certainly have other scientific value, such as growth rate studies of ancient fishes, and for this reason are kept for posterity after excavation.

Identification of the fish remains was made using comparative material held at the Archaeozoology Laboratory, Museum of New Zealand Te Papa Tongarewa. As each identification was made, the anatomy (for example $2 \mathrm{LD}=2$ Left Dentaries) and the taxon identified were written on a

Figure 4: Copy of a typical original bag before re-bagging, including catalogue number \#2559

Figure 5: A typical self-sealing plastic bag after re-bagging. The original catalogue number \#3053 preserves the unique location details. The identification is written on a removable label on the outside of the bag.
removable label which was stuck on the bag. At a later stage, when information was entered into a computer database (known as Kupenga), a reference number was allocated from the database, and this is written on the bag, and circled. This process ensures that there is a direct link between the two databases and every single bag. Should a more precise identification be made at some later stage, or an error identified in anatomy or species, one can return to the precise point in the database, make any corrections necessary and then update all tables using suitable software held by the authors.

In a few cases bones belonged to species not present in the Archaeozoology Laboratory. When this happens 'Unidentified Species A' is entered. In the case of Mangilao, six different unidentified species were found, and labelled A to F respectively. These occur in the category Teleostomi in Tables in this report. Only a few of the standard fish bones from Mangilao could not be identified.

METHODS OF FISH BONE ANALYSIS

The methods of analysis closely follow the technique developed in New Zealand for the treatment of archaeological fish bone assemblages from the Pacific Islands generally. This has been described elsewhere (Leach and Davidson, 1977; Leach 1986, 1997) so only a few details need to be given here. The assemblages covered in this report are quite small and make it difficult to observe significant temporal variation.

The identifiable fish bones were sorted anatomically and re-bagged. Taking each part of the anatomy in turn, bones were then sorted into taxonomic categories, and identified with reference to the comparative collection, which contains mounted bones of over 300 Pacific species. The nomenclature and taxonomy largely follow Munro (1967).

It is important to note that all identifications are made to the lowest taxonomic level possible. The level at which tropical Pacific fish bone can be identified varies greatly. For example, amongst the Holocentridae family, the cranial anatomy, particularly the dentary, of Ostichthys murdjan is very distinctive. Holocentrus ruber is also fairly distinctive, but a bone apparently belonging to this species would not be entered as such on a bag. Instead the identification would be entered as Holocentrus cf. ruber, indicating that this species is the most similar in the comparative collection, but although the genus is certain the species is not. Other bone specimens belonging to this family can only be identified to the level of Holocentrus sp. At the other end of the scale, with one exception, cranial bones of the Scaridae family are not identified to a level lower than family. The exception is Bolbometopon muraticum, which is of exceptional size. Fleming has shown that close familiarity with the cranial anatomy of the Scaridae permits identification to sub-family without great difficulty, and that the bucktooth characteristics of Calotomus spp. are also distinctive (Fleming, 1986: 167 ff.). However, the different Scaridae species have similar habitats and are caught by similar methods. From the point of view of studying human behaviour, identifying to species is therefore of little value.

The calculation of minimum numbers follows the general technique of Chaplin (1971), and is further discussed by Leach $(1986,1997)$. No attempt is made to increase MNI by taking into account observed size mis-matches. For comparative purposes, NISP values were also calculated and given in this report.

BASIC RESULTS OF FISH BONE ANALYSIS

Some 394 bones were able to be identified from 127 different assemblages from Site 25 at Mangilao. The Minimum Number of Individuals (MNI) for each type of fish was calculated and these details are provided in the Appendix, and summarised by family in Tables 1, 2 and 3 (see also Figures 5, 6 and 7). The bones were generally in good condition. However, a few premaxilla of Diodontidae (pufferfish) were very weathered and may not represent food remains. They have, however, been included in the analysis.

TABLE 1
 Mangilao Site 25 Total MNI by Family All Assemblages Combined

Family Name	MNI	$\mathbf{\%}$ \%		
Scaridae	97	36.33	\pm	6.0
Coryphaenidae	41	15.36	\pm	4.5
Coridae/Labridae	21	7.87	\pm	3.4
Lethrinidae	20	7.49	\pm	3.3
Istiophoridae/Xiphii	14	5.24	\pm	2.9
Epinephelidae	11	4.12	\pm	2.6
Elasmobranchii	10	3.75	\pm	2.5
Diodontidae	9	3.37	\pm	2.4
Balistidae	8	3.00	\pm	2.2
Acanthuridae	7	2.62	\pm	2.1
Nemipteridae	6	2.25	\pm	2.0
Lutjanidae	5	1.87	\pm	1.8
Acanthocybiidae	4	1.50	\pm	1.6
Teleostomi	4	1.50	\pm	1.6
Carangidae	2	0.75	\pm	1.2
Coridae	2	0.75	\pm	1.2
Scombridae	2	0.75	\pm	1.2
Echeneidae	2	0.75	\pm	1.2
Holocentridae	1	0.37	\pm	0.9
Kyphosidae	1	0.37	\pm	0.9
Total	$\mathbf{2 6 7}$	$\mathbf{1 0 0}$		

Confidence limits are provided for each percentage in this and other Tables in this report. A percentage statistic (or proportions, whose sum=1.0) is a measure of relative abundance in the sense that when one percentage changes, so do all the others, so that the sum remains 100.0. The significance of any difference in relative abundance between two sets is easily tested by calculating the error range of each percentage (or proportion) to see if the two sets overlap or not. The calculation of the confidence limit of a proportion is as follows (Snedecor and Cochran 1967: 210-211; Leach and de Souza 1979: 32):

$$
\mathrm{C}=\mathrm{K} *(\mathrm{P} *(1.0-\mathrm{P}) / \mathrm{N})^{0.5}+1 / 2 \mathrm{~N}
$$

C is the confidence limit, P is the proportion, N the sample size, and K is a constant related to the chosen probability level ($=1.96$ for 95% confidence, following the distribution of Student's t). The factor $1 / 2 \mathrm{~N}$ is added as a correction for continuity, which is important for small samples. For example, If $\mathrm{N}=128$ and there are 7 items with some characteristic, then $\mathrm{P}=0.054688$, and $\mathrm{C}=0.0433$. So the 95% confidence range can be expressed as $5.47 \% \pm 4.33 \%$. For small samples, the distribution of Student's t must be consulted to adjust the value of C accordingly. For example if $\mathrm{N}=35$, C will be 2.02 , not 1.96 .

Figure 6: The abundance of different families of fish at Site 25, Mangilao.

TABLE 2
Mangilao MNI and Percent by Family Assemblages Combined into Four Periods 1=Early, 2=Middle, 3=Late, 4=Historic

Family	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Total	$\mathbf{\%}$
Scaridae	6	33	43	2	84	35.44
Coryphaenidae	-	21	18	-	39	16.46
Lethrinidae	-	14	4	1	19	8.02
Coridae/Labridae	-	11	5	-	16	6.75
Istiophoridae/Xiphiidae	-	3	9	1	13	5.49
Epinephelidae	1	8	2	-	11	4.64
Elasmobranchii	1	6	2	1	10	4.22
Balistidae	1	4	2	-	7	2.95
Diodontidae	-	-	6	1	7	2.95
Acanthuridae	-	2	2	1	5	2.11
Lutjanidae	-	3	2	-	5	2.11
Acanthocybiidae	-	3	1	-	4	1.69
Nemipteridae	-	3	1	-	4	1.69
Teleostomi	-	4	-	-	4	1.69
Coridae	1	1	-	-	2	0.84
Scombridae	-	2	-	-	2	0.84
Echeneidae	-	2	-	-	2	0.84
Carangidae	-	-	1	-	1	0.42
Holocentridae	-	1	-	-	1	0.42
Kyphosidae	-	-	1	-	1	0.42
Totals	$\mathbf{-}$	$\mathbf{1 2 1}$	$\mathbf{9 9}$	$\mathbf{7}$	$\mathbf{2 3 7}$	$\mathbf{1 0 0}$
Family	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		
Scaridae	60.0 ± 39.1	27.3 ± 8.3	43.4 ± 10.4	28.6 ± 46.5		
Coryphaenidae	-	17.4 ± 7.2	18.2 ± 8.2	-		
Lethrinidae	-	11.6 ± 6.1	4.0 ± 4.4	14.3 ± 37.6		
Coridae/Labridae	-	9.1 ± 5.5	5.1 ± 4.9	-		
Istiophoridae/Xiphiidae	-	2.5 ± 3.2	9.1 ± 6.2	14.3 ± 37.6		
Epinephelidae	10.0 ± 25.9	6.6 ± 4.8	2.0 ± 3.3	-		
Elasmobranchii	10.0 ± 25.9	5.0 ± 4.3	2.0 ± 3.3	14.3 ± 37.6		
Balistidae	10.0 ± 25.9	3.3 ± 3.6	2.0 ± 3.3	-		
Diodontidae	-	-	6.1 ± 5.3	14.3 ± 37.6		
Acanthuridae	-	1.7 ± 2.7	2.0 ± 3.3	14.3 ± 37.6		
Lutjanidae	-	2.5 ± 3.2	2.0 ± 3.3	-		
Acanthocybiidae	-	2.5 ± 3.2	1.0 ± 2.5	-		
Nemipteridae	-	2.5 ± 3.2	1.0 ± 2.5	-		
Teleostomi	-	3.3 ± 3.6	-	-		
Coridae	10.0 ± 25.9	0.8 ± 2.0	-	-		
Scombridae	-	1.7 ± 2.7	-	-		
Echeneidae	-	1.7 ± 2.7	-	-		
Carangidae	-	-	1.0 ± 2.5	-		
Holocentridae	-	0.8 ± 2.0	-	-		
Kyphosidae	-	-	1.0 ± 2.5	-		
Totals	$\mathbf{1 0 0 . 0}$					

Changing Fish Catches at Mangilao

1 - Scaridae 2 - Coryphaenidae
3 - Lethrinidae 4 - Coridae/Labridae
5 - Istiophoridae/Xiphiidae 6 - Epinephelidae
7 - Elasmobranchii
9 - Diodontidae
11 - Lutjanidae
10 - Acanthuridae
Lutjanidae
12 - Acanthocybiidae
15 - Coridae
17 - Echeneidae
19 - Holocentridae

$$
20 \text { - Kyphosidae }
$$

Figure 7: Relative abundance of fish at different Time Periods at Mangilao.

TABLE 3
Mangilao MNI and Percent by Family Assemblages Combined into Three Areas $1=$ Western, $2=$ Central, 3=Eastern

Family Name	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Total	\%
Scaridae	23	5	69	97	36.33
Coryphaenidae	6	3	32	41	15.36
Coridae/Labridae	1	4	16	21	7.87
Lethrinidae	2	2	16	20	7.49
Istiophoridae/Xiphiidae	7	-	7	14	5.24
Epinephelidae	2	1	8	11	4.12
Elasmobranchii	5	-	5	10	3.75
Diodontidae	-	1	8	9	3.37
Balistidae	1	1	6	8	3.00
Acanthuridae	1	1	5	7	2.62
Nemipteridae	1	-	5	6	2.25
Lutjanidae	-	1	4	5	1.87
Acanthocybiidae	-	1	3	4	1.50
Teleostomi	-	-	4	4	1.50
Carangidae	-	-	2	2	0.75
Coridae	1	-	1	2	0.75
Scombridae	-	-	2	2	0.75
Echeneidae	-	-	2	2	0.75
Holocentridae	-	-	1	1	0.37
Kyphosidae	-	1	-	1	0.37
Total	$\mathbf{5 0}$	$\mathbf{2 1}$	$\mathbf{1 9 6}$	$\mathbf{2 6 7}$	$\mathbf{1 0 0}$

Figure 8: Relative abundance of fish at different areas at Mangilao.

The time periods represented in Table 2 and Figure 7 were arrived at with advice from Micronesian Archaeological Research Services. The groupings suggested were:

Historic
Late Period
Middle Period
Early Period

Some identified bones were from mixed or uncertain contexts. These are excluded from Table 2 and Figure 7.

The split into three areas in Table 3 and Figure 8 follows clear divisions of excavated squares. These are listed in Table 6 in the Appendix. Statistical errors for each percentage are given in Tables 2 and 3 (for details of this see below Table 1). These assist evaluation of the significance of any observed difference between time periods or areas. For example, it will be noticed that in the case of swordfish and marlin there is an apparent rise in abundance through time.

Historic Period	14.3%
Late Period	9.1%
Middle Period	2.5%
Early	0.0%

Such an inference, however, must be tempered by the statistical error margins around these estimates, which are: $2.5 \pm 3.2,9.1 \pm 6.2$, and 14.3 ± 37.6 respectively. Clearly, these margins overlap, and the inference fails to be confirmed. With much larger samples it is possible that this apparent trend through time could be confirmed; on the other hand, it may be quashed.

Careful examination of both Tables 2 and 3 will show that no changes in time or from one area to another can be confirmed.

THE GENERAL CHARACTER OF FISHING AT MANGILAO SITE 25

The fish remains at Mangilao belong to at least 20 different families (Figure 1). This is fairly typical for Pacific Island prehistoric people. The catch is also dominated by only a few species, four or five at most. Again, there is nothing unusual about this. The most common type of fish in almost all archaeological sites in the Pacific belong to the Scaridae, and once again Mangilao is no exception.

One interesting find at Mangilao is the presence of two right maxillae of some species of tuna, unfortunately not able to be identified other than to family. Tuna are rare in Pacific island archaeological sites.

It is also notable that there are examples of both the humphead wrasse (Cheilinus undulatus) and the humphead parrotfish (Bolbometopon muricatum). This is unusual in our experience of Pacific archaeological fish bone collections. These fish grow to considerable size (humphead parrotfish to about 1.2 metres, and humphead wrasse to about 1.8 metres) and are very strong animals. If they are speared and not killed outright they will instantly dive taking both the spear and the fishermen to depths. They would also make a mess of any net they become entangled in. It is uncertain how these fish would have been caught in prehistoric times.

Figure 9: The dolphinfish and several species of swordfish and marlin

However, the most unusual aspect of the fish remains at Mangilao is the presence of significant numbers of dolphinfish and one or more species belonging to the Istiophoridae or Xiphiidae families or both (Figure 9).

Dolphinfish were mainly identified from their distinctive vertebrae, although a few cranial bones were also present. These fish are quite numerous at Mangilao, and catching them shows great enterprise on the part of the prehistoric people on Guam. Dolphinfish are very strong and can reach great speed in the water. One of their favourite foods is flyingfish, which they are able to follow underwater as they fly overhead, capturing them as they re-enter the water.

Mention must be made of the systematic hunting of dolphinfish in recent times by the Yami people of Botel Tobago, off the south-east coast of Taiwan (Hsu 1982: 116 ff .; Kano and Segawa 1956: 186). However, several archaeological sites at O-Luan-Pi on the southernmost tip of Taiwan suggest a more convincing link with the Marianas (Leach et al. 1988a: 37, 53; Li 1997). These sites in Taiwan date from about 2,000 to $5,000 \mathrm{BP}$ and possess notable similarities with sites in Guam and elsewhere in the Marianas. People in both these areas possessed highly specialised fishing skills, not seen in any other part of Oceania.

Dolphinfish are migratory, and are most abundant in the Guam waters from February to April (Amesbury and Myers 1982: 49); there is an even shorter period when they can be taken in the waters about Botel Tobago - during May and June (Kano and Segawa 1956: 186). These authors also note (ibid.) that the fish when caught has a special hook placed in its mouth and this is then tied tight to the tail. The fish is literally bent to death in this manner (see also Hsu 1982: 296). This seems a very odd way of killing a fish, since a cut through the arteries at the base of the operculum kills even large fishes very quickly. It is noteworthy that this same method of constraining the fish was used in Tahiti (see Nordhoff 1930: 170), although the hook which actually caught the fish was used. Nordhoff also makes an important remark in passing that "in the old days, before Micronesians and Cook Islanders taught the Society Island people how to catch flying fish by torchlight..." (ibid.: 169), they were caught during the day. This remark confirms a suspicion, now difficult to document, that during the historic period in the Pacific, there was a great deal of exchange of knowledge on different fishing methods. This makes it very difficult now to evaluate from historic records what are genuinely 'traditional' methods. Nevertheless, there could be some significance in the parallel between Botel Tobago and the Marianas and Guam when it comes to dolphinfish.

Unfortunately, comparative material is not available which would assist with identification of marlin or swordfish from Site 25 even to the correct genus. Although our database is coordinated with the family organisation of Munro (1967), the most cited authority on the higher level taxonomy of fishes is Nelson (1994) who divides the family Xiphiidae into two subfamilies: Xiphinae (swordfish) and Istiophorinae; the latter having three genera: Istiophoris (sailfishes), Tetrapturus (spearfishes) and Makaira (marlins) (Nelson 1994: 428-429). The distribution of these fishes is complex, varying both seasonally and geographically. It is always tempting to assist identification of archaeological fauna using modern distributional data; however, there is a problem associated with this approach - over archaeological time there can be significant changes in climate and oceanic current circulation patterns, which have a dramatic affect on the distribution of many animals, fishes included. This temptation should therefore be resisted and bones identified from their unique anatomical details alone.

There are a number of parts of the anatomy which are highly distinctive of marlin and swordfish. Their mouthparts are obviously unusual, but so are their vertebrae, which are considerably elongated,

Figure 10: The relative abundance of swordfish/marlin and dolphinfish. Only 7 sites of more than 70 in the database have significant archaeological remains of fishes of these families.
with an hourglass shaped interior. They also possess a partly ossified secondary shell inside the vertebral cavity. Finally, the zygapophyses are greatly elongated, acting as anchoring plates for their strong back muscles, which assist high speed in the water when hunting. Therefore, fragments of both vertebrae and zygapophyses may be identified to this group of fishes. Finally, the caudal peduncle of this group of fishes is again highly distinctive, and since there is only one per fish is ideal for calculating MNI.

Although it is not possible at the moment to identify which kind of swordfish or marlin was being caught at Mangilao, at least two species were certainly present. The database of fish remains from Pacific archaeological sites in the Archaeozoology Laboratory contains information from 74 sites scattered across the Pacific. Only seven sites have evidence of swordfish/marlin fishing, and these are shown on Figure 10. Other than Motupore near Port Moresby in Papua New Guinea, these sites are all located in the Marianas chain. The presence of prehistoric big-game fishing for swordfish/marlin, dolphinfish and tuna has been noted before at archaeological sites on the island of Rota: at Mochong (Leach et al. 1988a), at Songsong (Leach et al. 1988b), and on the road to the airport on the north coast between these two (Davidson and Leach 1988), on Tinian at Tachogna (Leach et al. 1988a), and at the Pagat site on Guam (Craib 1986: Table C-3).

There are far too many bones of these fish in increasing numbers of archaeological sites for them to have been simply isolated examples washed ashore; rather it seems fairly certain that they were being systematically hunted in prehistoric times. One possibility is that these people learned how to catch them after specimens were hooked on dolphinfish lines. Pollard (1969: 70 ff .) has some useful comments to make on marlin habits. He notes that small black marlin will take lure hooks, but that it is almost impossible to get a large marlin to accept a lure. Instead, bait trolling is required, and the bait should be sizeable - bait fish as large as 3.5 to 4.5 kg are very effective. If flying fish were used for bait trolling for dolphinfish, then it is quite feasible that some smaller marlin were hooked in this way. Once people learned how to catch small specimens, then it is possible that experimentation with different kinds of bait trolling might result in the capture of large specimens. In this respect, Zamora had some useful comments to make in AD 1602 on the Marianas fishermen in the historic period. It appears that flying fish was a very important target of their fishing:
the first flying fish is eaten raw; the second is baited on a large hook attached to a line that is cast over the stern of the boat. Many dorados [mahimahi; dolphin fish; Coryphaena hippurus], agujas paladares [possibly blue marlin, or Makaira higricans [sic, nigricans]], and other large fish are caught in this manner (Driver 1983: 208).

The social importance of these large fish is also recorded by Zamora, and he describes various aspects of associated ceremonial behaviour and salting of the meat for preservation. One interesting story, reminiscent of Ernest Hemingway's tale of the 'Old Man and the Sea', is recounted as follows:
...a very large blue marlin [aguja paladar] took the hook. His line was very thin and, as he did not want to break it, he hesitated to pull it in. Yet he was very anxious to land the fish; therefore, he very cautiously began playing and tiring it. This took a long time. Meanwhile, a large shark appeared and attacked the blue marlin in the midsection of its back. In order not to let go of his line, the indio allowed his boat to capsize. Then he tied the end of his line to the capsized funei, followed the line through the water to the shark, and diverted him from his catch. Then he brought the blue marlin back to his boat, righted the craft, and sailed home, flying a woven mat as a banner from the masthead. Once ashore, he began to
tell us what had happened and, like a person who believes he has accomplished a great feat, very proudly strutted pompously along the beach (Driver 1983: 209).

To catch and land a swordfish or marlin, weighing at least several hundred and possibly as much as a thousand kilograms, from a dugout canoe, is a considerable achievement, and must have been a spectacular sight. However the Mangilao fishermen were catching these fish it would have been a very dangerous pastime for people in a canoe, as these fish will readily attack their persecutor. There is a record of a swordfish penetrating boat decking to a depth of 27 inches; the specimen is on display in the British Museum of Natural History (Pollard 1969: 68). Another possibility is that these fish were caught with harpoons, while they basked on the surface. This would also be a dangerous method, possibly resulting in immediate retaliation on the part of the fish, unless it was killed outright. In this respect it is worth noting that the modern fishermen of Ulithi usually cut a line once they know they have hooked a marlin, with the simple comment "too dangerous". The prehistoric fishermen of Mangilao deserve our admiration.

FISH REMAINS FROM SITES 253 AND 667

Only a few fish bones were identified from these two sites, and do not merit separate comment. The identifications are provided in the Appendix in Tables 8, 9, 11 and 12.

CONCLUSIONS

This collection of fish remains from numerous small excavations at Mangilao on the island of Guam has revealed some interesting aspects of prehistoric fishing behaviour. In particular, the presence of big-game fishes well back into the prehistoric period extends our knowledge of this activity further south in the Marianas chain.

REFERENCES CITED

Amesbury, S.S. and Myers, R.F. 1982. Guide to the coastal resources of Guam. Volume 1, the fishes. University of Guam Marine Laboratory, Contribution Number 173. University of Guam Press.

Chaplin, R.E. 1971. The study of animal bones from archaeological sites. Seminar Press, London.
Craib, J.L. 1986. Casas de los antiguos (Houses of the ancients): Social differentiation in protohistoric Chamorro society, Mariana Islands. Unpublished PhD thesis, Anthropology Department, University of Sydney.

Davidson, J.M. and Leach, B.F. 1988. Chapter 15: Fishing. pp. 335-356 In: Butler, B.M (ed.) Archaeological investigations on the north coast of Rota, Mariana Islands. Micronesian Archaeological Survey Report No. 23. Southern Illinois University at Carbondale, Centre for Archaeological Investigations, Occasional Paper 8.

Driver, M.G. 1983. Fray Juan Pombre de Zamora and his account of the Mariana Islands. Journal of Pacific History 18 (3): 198-216.

Fleming, M.A. 1986. The Scaridae family in Pacific prehistory. Unpublished MA Thesis,

Anthropology, University of Otago.
Hsu, Y.C. 1982. Yami fishing practices - migratory fish. Southern Materials Centre Inc. Taipei.
Kano, T. and Segawa, K. 1956. An illustrated ethnography of Formosan aborigines. Volume 1: The Yami. Maruzen Co. Ltd., Tokyo.

Leach, B.F. 1986. A method for analysis of Pacific island fishbone assemblages and an associated data base management system. Journal of Archaeological Science 13 (2): 147-159.

Leach, B.F. 1997. A guide to the identification of fish remains from New Zealand archaeological sites. New Zealand Journal of Archaeology Special Publication. 129 pp.

Leach, B.F. and Davidson, J.M. 1977. Fishing methods and seasonality at Paremata (N160/50). New Zealand Archaeological Association Newsletter 20 (3): 166-175.

Leach, B.F. and de Souza, P. 1979. The changing proportions of Mayor Island obsidian in New Zealand prehistory. New Zealand Journal of Archaeology 1:29-51.

Leach, B.F., Fleming, M., Davidson, J.M., Ward, G.K. and Craib, J. 1988a. Prehistoric fishing at Mochong, Rota, Mariana Islands. Man and Culture in Oceania 4: 31-62.

Leach, B.F., Horwood, M., Smith, I.W.G. and McGovern-Wilson, R. 1988b. Analysis of faunal material from Songsong village, Rota, Mariana Islands. USA Historic Preservation Office.

Li, K-T. 1997. Change and stability in the dietary system of a prehistoric coastal population in southern Taiwan. Unpublished PhD dissertation, Arizona State University.

Munro, I.S.R. 1967. The fishes of New Guinea. Department of Agriculture, Stock and Fisheries, Port Moresby, New Guinea.

Nelson, J.S. 1994. Fishes of the World. John Wiley, New York.
Nordhoff, C. 1930. Notes on the offshore fishing of the Society Islands. Journal of the Polynesian Society 39 (2): 137-173; 39 (3): 221-262; 39 (4): 380.

Pollard, J. (ed.) 1969. Australian and New Zealand fishing. Paul Hamlyn Ltd. Sydney.
Snedecor, G.W. and Cochran, W.G. 1967. Statistical methods. Iowa State University Press.

APPENDIX: Detailed Results of Fish Analysis from Mangilao

The Tables in this Appendix are printouts from the Kupenga Fishbone Database in the Archaeozoology Laboratory at the Museum of New Zealand Te Papa Tongarewa and should be read as follows:

Tables 4 to 7 and 10 provide details of the identifications of fish remains from Site 25.
Table 4 provides totals for the whole site.
At the head of each Table appears a list of the assemblages (space/time units) which have been combined together to form each column in the table. Referring to Table 4, an example is:
$(498,3)=$ GOLF004 Square 208, Layer IIId
'GOLF' is the code in the Kupenga Fishbone Database for Mangilao site 25. '498, 3' is the code in the database which identifies the unique space/time assemblage in Mangilao Site 25 which is Square 208, Layer IIId. The code ' 004 ' attached to GOLF shows that Square 208 is the fourth spatial unit listed for Site 25. Any codes appearing as either '999' or with a ? symbol refer to an unknown provenance in the site.

Once each column has been defined in this manner, this is followed by the listing of the Minimum Number of Individuals (MNI) according to taxon and the percent MNI of each taxon for each of the columns identified at the head of the Table.

Database codes for Taxon and Family also appear in the Tables below. For example, In Table 4, Taxon \#1 = Acanthocybium solandri. Further down in the Family tabulation Family \#140 refers to Scaridae.

The figures are then presented according to family in decreasing order of abundance (as in Table 1 and Figure 6). The last part of this Table shows the systematic error associated with each percentage.

Tables 5 and 6 present the same information, now broken down into four time periods and three spatial divisions, as described in the text. In Table 5, $1=$ Early Prehistoric, $2=$ Middle Prehistoric, $3=$ Late Prehistoric, and $4=$ Historic and Recent. In Table 6, $1=$ Western, $2=$ Central and $3=$ Eastern.

Table 7 presents NISP (number of identified specimens) from Site 25 according to taxon and family, and shows the breakdown by anatomy of identified specimens of the most common family (Scaridae).

Table 10 lists all individual identifications from Site 25 according to excavations unit (square), layer, anatomy and taxon.
Tables 8 and 11 provide details of identifications from Site 253.
Table 8 presents NISP by taxon and family, and by anatomy for the most common family, Scaridae.
Table 11 lists all individual identifications from Site 253 according to excavation unit (square), layer, anatomy and taxon.
Tables 9 and 12 provide the same information for Site 667.

Table 4: Mangilao Site 25 MNI All Assemblages Combined
Column Numbers and Equivalent Assemblage Reference Numbers

=	495,	1) = GOLFOO1	Square 999,	Layer
$=1$	495,	2) = GOLFOO1	Square 999,	Layer IIIa
$=$	498,	3) = GOLFO04	Square 208,	Layer IIId
$=1$	498,	4) = GOLFO04	Square 208,	Layer IIIe
$=1$	499,	1) = GOLFO05	Square 210,	Layer IIIa/b
$=1$	506,	2) = GOLF012	Square 233,	Layer IIIe
$=1$	510,	1) = GOLF016	Square 240,	Layer IIIc
$=1$	511,	1) = GOLF017	Square 241,	Layer IIIe
$=1$	511,	3) = GOLF017	Square 241,	Layer IIIg2
$=1$	512,	1) = GOLF018	Square 242,	Layer IIIe
$=1$	514,	1) = GOLF020	Square 244,	Layer IIIe
$=1$	514,	3) = GOLF020	Square 244,	Layer IIIg2
$=1$	515,	2) = GOLF021	Square 245,	Layer IIIg2
$=1$	516,	1) = GOLF022	Square 246,	Layer IIIe
$=1$	516,	2) = GOLFO22	Square 246,	Layer IIIg1
$=1$	517,	2) = GOLFO23	Square 247,	Layer IIIg2
$=1$	519,	4) = GOLF025	Square 249,	Layer IIIg2
$=1$	526,	2) = GOLF032	Square 260,	Layer IIIa
$=1$	533,	1) = GOLF039	Square 271,	Layer Ib
$=1$	534,	1) = GOLF040	Square 272,	Layer IIIa
$=1$	535,	2) = GOLF041	Square 273,	Layer IIIb
$=1$	536,	2) = GOLF042	Square 276,	Layer III
$=1$	537,	2) = GOLF043	Square 278,	Layer Ic
$=1$	538,	1) = GOLF044	Square 282,	Layer IIIa
$=1$	539,	1) = GOLF045	Square 283,	Layer IIIa
$=1$	539,	2) = GOLF045	Square 283,	Layer IIIb
$=1$	540,	1) = GOLF046	Square 284,	Layer IIIa
$=1$	541,	2) = GOLF047	Square 285,	Layer IIIb
$=1$	541,	3) = GOLF047	Square 285,	Layer IIIe
$=1$	542,	1) = GOLF048	Square 286,	Layer IIIa
$=1$	543,	1) = GOLF049	Square 287,	Layer IIIa
$=1$	544,	1) = GOLF050	Square 288,	Layer IIIa
$=1$	545,	2) = GOLF051	Square 289,	Layer IIIb
=	546,	1) = GOLF052	Square 291,	Layer IIIa
$=$	547,	1) = GOLF053	Square 292,	Layer IIIa
$=1$	549,	2) = GOLF055	Square 294,	Layer IIIb
$=1$	550,	1) = GOLF056	Square 297,	Layer IIIa
	551,	1) = GOLF057	Square 298,	Layer IIIa
	552,	2) = GOLF058	Square 299,	Layer IIIb
$=1$	553,	2) = GOLF059	Square 300,	Layer IIb
	554,	1) = GOLF060	Square 301,	Layer IIa
	560,	1) = GOLF066	Square 400,	Layer IIIb
$=1$	562,	1) = GOLF068	Square 402,	Layer IIIa
	562,	2) = GOLF068	Square 402,	Layer IIIb
	563,	1) = GOLF069	Square 403,	Layer IIIa
-	564,	1) = GOLF070	Square 409,	Layer IIIa
	566,	1) = GOLF072	Square 411,	Layer IIIa
	569,	1) = GOLF075	Square 414,	Layer IIIa
	570,	2) = GOLF076	Square 416,	Layer IIIb
	570,	3) = GOLF076	Square 416,	Layer IIIc
	571,	1) = GOLF077	Square 417,	Layer IIIa
$=$	571,	2) = GOLF077	Square 417,	Layer IIIa/b/c
	571,	3) = GOLF077	Square 417,	Layer IIIb
	571,	4) = GOLF077	Square 417,	Layer IIIc
	572,	1) = GOLF078	Square 418,	Layer IIIa
	572,	2) = GOLF078	Square 418,	Layer IIIb
	573,	2) = GOLF079	Square 419,	Layer IIIa2
$=$	573,	3) = GOLF079	Square 419,	Layer IIIa3
	573,	4) = GOLF079	Square 419,	Layer IIIb
	574,	1) = GOLF080	Square 420,	Layer IIIa
	574,	2) = GOLF080	Square 420,	Layer IIIb
	574,	3) = GOLF080	Square 420,	Layer IIIc
	574,	4) = GOLF080	Square 420,	Layer IIIc1
	575,	1) = GOLF081	Square 421,	Layer IIIa
	575,	2) = GOLF081	Square 421,	Layer IIIa/b
	575,	3) = GOLF081	Square 421,	Layer IIIb
	575,	5) = GOLF081	Square 421,	Layer IIId

Overall Totals for these Assemblages by Taxa

Taxon \#	Taxon Name	MNI	$\%$
1	Acanthocybium soland	4	1.50
2	Acanthuridae	6.05	
4	Acanthurus sp.	1	0.37
14	Balistidae	8	3.00
20	Carangoides laticaud	1	0.37

25	Caranx sp.	1	0.37
30	Cheilinus undulatus	2	0.75
32	Coridae/Labridae	21	7.87
33	Coryphaena hippurus	41	15.36
35	Diodon sp.	9	3.37
36	Elasmobranchii	10	3.75
38	Epinephelus/Ceph sp.	11	4.12
44	Holocentrus sp.	1	0.37
45	Istiophoridae/Xiphii	14	5.24
48	Kyphosus sp.	1	0.37
50	Lethrinidae	20	7.49
52	Lutjanus sp.	5	1.87
58	Monotaxis granoculis	6	2.25
78	Scaridae	90	33.71
85	Teleostomi Species A	1	0.37
86	Teleostomi Species B	1	0.37
87	Teleostomi Species C	1	0.37
88	Teleostomi Species D	1	0.37
92	Thunnidae/Katsuwonid	2	0.75
96	Remora sp.	2	0.75
113	Bolbometopon sp.	7	2.62

Taxon	1	Totals
-1	4	4
2	6	6
4	1	1
14	8	8
20	1	1
25	1	1
30	2	2
32	21	21
33	41	41
35	9	9
36	10	10
38	11	11
44	1	1
45	14	14
48	1	1
50	20	20
52	5	5
58	6	6
78	90	90
85	1	1
86	1	1
87	1	1
88	1	1
92	2	2
96	2	2
113	7	7
---------------1		

Overall Family \#	lis for these Assembl Family Name	by MNI	Family
140	Scaridae	97	36.33
85	Coryphaenidae	41	15.36
222	Coridae/Labridae	21	7.87
114	Lethrinidae	20	7.49
221	Istiophoridae/Xiphii	14	5.24
97	Epinephelidae	11	4.12
192	Elasmobranchii	10	3.75
175	Diodontidae	9	3.37
180	Balistidae	8	3.00
159	Acanthuridae	7	2.62


```
Family 1 Totals
```

140	97	97
85	41	41
222	21	21
114	20	20
221	14	14
97	11	11
192	10	10
175	9	9
180	8	8
159	7	7
110	6	6
106	5	5
73	4	4
197	4	4
88	2	2
138	2	2
72	2	2
174	2	2
57	1	1
124	1	1

```
Totals 267 267
```

Family \% 1
-
$14036.3+-6.0$
85 15.4+- 4.5
222 7.9+- 3.4
114 7.5+- 3.3
$2215.2+-2.9$
$974.1+-2.6$
$1923.7+-2.5$
$1753.4+-2.4$
$1803.0+-2.2$
159 2.6+- 2.1
$1102.2+-2.0$
106 1.9+- 1.8
73 1.5+- 1.6
197 1.5+- 1.6
$88 \quad 0.7+-1.2$
$1380.7+-1.2$
$720.7+-1.2$
$1740.7+-\quad 1.2$
$570.4+-\quad 0.9$
$1240.4+-0.9$
Total 100.0

Table 5: Mangilao Site 25 MNI For Four Time Periods
Column Numbers and Equivalent Assemblage Reference Numbers

Column 2

Column 3

=	546,	1) = GOLF052	Square 291,	Layer IIIa
	547,	1) = GOLF053	Square 292,	Layer IIIa
$=$	550,	1) = GOLF056	Square 297,	Layer IIIa
=	551,	1) = GOLF057	Square 298,	Layer IIIa
$=$	562,	1) = GOLF068	Square 402,	Layer IIIa
=	563,	1) = GOLF069	Square 403,	Layer IIIa
=	564,	1) = GOLF070	Square 409,	Layer IIIa
	566,	1) = GOLF072	Square 411,	Layer IIIa
	569,	1) = GOLF075	Square 414,	Layer IIIa
=	571,	1) = GOLF077	Square 417,	Layer IIIa
=	572,	1) = GOLF078	Square 418,	Layer IIIa
	574,	1) = GOLF080	Square 420,	Layer IIIa
	575,	1) = GOLF081	Square 421,	Layer IIIa
	578,	1) = GOLF084	Square 424,	Layer IIIa
	579,	1) = GOLF085	Square 425,	Layer IIIa
=	580,	1) = GOLF086	Square 426,	Layer IIIa
	581,	1) = GOLF087	Square 427,	Layer IIIa
	584,	1) = GOLF090	Square 430,	Layer IIIa
	585,	1) = GOLF091	Square 431,	Layer IIIa
	586,	1) = GOLF092	Square 432,	Layer IIIa
	588,	2) = GOLFO94	Square 434,	Layer IIIa
=	599,	1) = GOLF105	Square 445,	Layer IIIa
	602,	2) = GOLF108	Square 451,	Layer IIIa
	603,	1) = GOLF109	Square 452,	Layer IIIa
	604,	1) = GOLF110	Square 453,	Layer IIIa
	605,	1) = GOLF111	Square 454,	Layer IIIa
	608,	1) = GOLF114	Square 458,	Layer IIIa
	609,	1) = GOLF115	Square 459,	Layer IIIa
	610,	1) = GOLF116	Square 460,	Layer IIIa
	612,	1) = GOLF118	Square 462,	Layer IIIa
	614,	1) = GOLF120	Square 464,	Layer IIIa
	617,	2) = GOLF123	Square 468,	Layer IIIa
	620,	1) = GOLF126	Square 471,	Layer IIIa
	621,	2) = GOLF127	Square 472,	Layer IIIa
=	624,	1) = GOLF130	Square 475,	Layer IIIa
	626,	1) = GOLF132	Square 477,	Layer IIIa
	627,	1) = GOLF133	Square 478,	Layer IIIa
	628,	1) = GOLF134	Square 479,	Layer IIIa
	584,	2) = GOLF090	Square 430,	Layer IIIa/al
	577,	1) = GOLF083	Square 423,	Layer IIIal
=	573,	2) = GOLF079	Square 419,	Layer IIIa2
	576,	2) = GOLF082	Square 422,	Layer IIIa2
	578,	2) = GOLF084	Square 424,	Layer IIIa2
	573,	3) = GOLF079	Square 419,	Layer IIIa3
	533,	1) = GOLF039	Square 271,	Layer Ib
	537,	2) = GOLF043	Square 278,	Layer Ic
=	593,	2) = GOLFO99	Square 439,	Layer Id
	594,	1) = GOLF100	Square 440,	Layer Id
	606,	1) = GOLF112	Square 456,	Layer Id
	554,	1) = GOLF060	Square 301,	Layer IIa
$=$	553,	2) = GOLF059	Square 300,	Layer IIb

Overall Totals for these Assemblages by Taxa

| Taxon \# | Taxon Name | MNI | $\%$ |
| :---: | :--- | ---: | ---: | ---: |
| 1 | Acanthocybium soland | 4 | 1.69 |
| 2 | Acanthuridae | 4 | 1.69 |
| 4 | Acanthurus sp. | 1 | 0.42 |
| 14 | Balistidae | 7 | 2.95 |
| 25 | Caranx sp. | 1 | 0.42 |
| 30 | Cheilinus undulatus | 2 | 0.84 |
| 32 | Coridae/Labridae | 16 | 6.75 |
| 33 | Coryphaena hippurus | 39 | 16.46 |
| 35 | Diodon sp. | 7 | 2.95 |
| 36 | Elasmobranchii | 10 | 4.22 |
| 38 | Epinephelus/Ceph sp. | 11 | 4.64 |
| 44 | Holocentrus sp. | 1 | 0.42 |
| 45 | Istiophoridae/Xiphii | 13 | 5.49 |
| 48 | Kyphosus sp. | 1 | 0.42 |

Table 6: Mangilao Site 25 MNI For Western, Central and Eastern Areas
Column Numbers and Equivalent Assemblage Reference Numbers

Column
Column 1

Column 2

Column 3

	573,	3)	= GOLF079	Square 419,	Layer IIIa3
$=1$	573,	4)	= GOLF079	Square 419,	Layer IIIb
$=1$	574,	1)	= GOLF080	Square 420,	Layer IIIa
$=1$	574,	2)	= GOLF080	Square 420,	Layer IIIb
$=1$	574,	3)	GOLF080	Square 420,	Layer IIIc
$=1$	574,	4)	= GOLF080	Square 420,	Layer IIIc1
$=1$	575,	1)	G0LF081	Square 421,	Layer IIIa
$=1$	575,	2)	= GOLF081	Square 421,	Layer IIIa/b
$=1$	575,	3)	= GOLF081	Square 421,	Layer IIIb
$=$	575,	5)	G0LF081	Square 421,	Layer IIId
$=1$	576,	2)	= GOLF082	Square 422,	Layer IIIa2
$=1$	577,	1)	= GOLF083	Square 423,	Layer IIIal
$=1$	577,	3)	= GOLF083	Square 423,	Layer IIIb
$=1$	578,	1)	= GOLF084	Square 424,	Layer IIIa
$=1$	578,	2)	= GOLF084	Square 424,	Layer IIIa2
$=$	578,	3)	= GOLF084	Square 424,	Layer IIIb
$=1$	578,	4)	= GOLF084	Square 424,	Layer IIIc
$=1$	579,	1)	GOLF085	Square 425	Layer IIIa
$=1$	579,	3)	= GOLF085	Square 425,	Layer IIIc
$=1$	580,	1)	= GOLF086	Square 426,	Layer IIIa
$=1$	581,	1)	= GOLF087	Square 427,	Layer IIIa
$=$	581,	2)	= GOLF087	Square 427,	Layer IIIb
$=1$	582,	3)	= GOLF088	Square 428,	Layer IIIc
$=1$	582,	4)	GOLF088	Square 428,	Layer IIId
$=1$	584,	1)	= GOLF090	Square 430,	Layer IIIa
$=1$	584,	2)	= GOLF090	Square 430,	Layer IIIa/
$=1$	584,	5)	= GOLF090	Square 430,	Layer IIIc
	585,	1)	= GOLF091	Square 431,	Layer IIIa
=	585,	2)	= GOLF091	Square 431	Layer IIIb
$=1$	586,	1)	= GOLF092	Square 432	Layer IIIa
$=1$	600,	1)	= GOLF106	Square 449,	Layer IIIb
$=1$	601,	1)	= GOLF107	Square 450,	Layer 999
$=1$	601,	3)	= GOLF107	Square 450,	Layer IIIb
	601,	4)	= GOLF107	Square 450,	Layer IIIc
	602,	2)	= GOLF108	Square 451,	Layer IIIa
$=1$	602,	3)	= GOLF108	Square 451	Layer IIIb
	602,	4)	= GOLF108	Square 451,	Layer IIIc
	606,	1)	= GOLF112	Square 456,	Layer Id
	607,	2)	= GOLF113	Square 457,	Layer IIIb
	611,	2)	= GOLF117	Square 461,	Layer IIIb
	612,	1)	= GOLF118	Square 462,	Layer IIIa
$=1$	617,	1)	= GOLF123	Square 468,	Layer 999
$=1$	617,	2)	= GOLF123	Square 468,	Layer IIIa
$=1$	617,	3)	= GOLF123	Square 468,	Layer IIIb
	619,	2)	= GOLF125	Square 470,	Layer IIIb
	620,	1)	= GOLF126	Square 471,	Layer IIIa
	621,	1)	= GOLF127	Square 472,	Layer 999
	621,	2)	= GOLF127	Square 472,	Layer IIIa
	623,	2)	= GOLF129	Square 474,	Layer IIIb
	624,	1)	= GOLF130	Square 475,	Layer IIIa
	624,	2)	= GOLF130	Square 475,	Layer IIIb
	625,	1)	= GOLF131	Square 476,	Layer 999
	625,	3)	= GOLF131	Square 476,	Layer IIIb\c
	625,	4)	= GOLF131	Square 476,	Layer IIIc
	626,	1)	= GOLF132	Square 477,	Layer IIIa
	627,	1)	= GOLF133	Square 478,	Layer IIIa
	627,	2)	= GOLF133	Square 478,	Layer IIIb
	628,	1)	= GOLF134	Square 479,	Layer IIIa
	495,	1)	= GOLF001	Square 999,	Layer
	495,	2)	GOLF001	Square 999,	Layer IIIa

Overall Totals for these Assemblages by Taxa

Taxon \#	Taxon Name	MNI	\%
1	Acanthocybium soland	4	1.50
2	Acanthuridae	6	2.25
4	Acanthurus sp.	1	0.37
14	Balistidae	8	3.00
20	Carangoides laticaud	1	0.37

25	Caranx sp.	1	0.37
30	Cheilinus undulatus	2	0.75
32	Coridae/Labridae	21	7.87
33	Coryphaena hippurus	41	15.36
35	Diodon sp.	9	3.37
36	Elasmobranchii	10	3.75
38	Epinephelus/Ceph sp.	11	4.12
44	Holocentrus sp.	1	0.37
45	Istiophoridae/Xiphii	14	5.24
48	Kyphosus sp.	1	0.37
50	Lethrinidae	20	7.49
52	Lutjanus sp.	5	1.87
58	Monotaxis granoculis	6	2.25
78	Scaridae	90	33.71
85	Teleostomi Species A	1	0.37
86	Teleostomi Species B	1	0.37
87	Teleostomi Species C	1	0.37
88	Teleostomi Species D	1	0.37
92	Thunnidae/Katsuwonid	2	0.75
96	Remora sp.	2	0.75
113	Bolbometopon sp.	7	2.62
Totals		267	100

Taxon	1	2	3	Totals
1	-	1	3	4
2	1	1	4	6
4	-	-	1	1
14	1	1	6	8
20	-	-	1	1
25	-	-	1	1
30	1	-	1	2
32	1	4	16	21
33	6	3	32	41
35	-	1	8	9
36	5	-	5	10
38	2	1	8	11
44	-	-	1	1
45	7	-	7	14
48	-	1	-	1
50	2	2	16	20
52	-	1	4	5
58	1	-	5	6
78	20	5	65	90
85	-	-	1	1
86	-	-	1	1
87	-	-	1	1
88	-	-	1	1
92	-	-	2	2
96	-	-	2	2
113	3	-	4	7
Totals	50	21	196	267

Overall Family \#	lis for these Assembl Family Name	by MNI	Family
140	Scaridae	97	36.33
85	Coryphaenidae	41	15.36
222	Coridae/Labridae	21	7.87
114	Lethrinidae	20	7.49
221	Istiophoridae/Xiphii	14	5.24
97	Epinephelidae	11	4.12
192	Elasmobranchii	10	3.75
175	Diodontidae	9	3.37
180	Balistidae	8	3.00
159	Acanthuridae	7	2.62

110		Nemipteridae				6	2.25
106		Lutjanidae				5	1.87
73		Acanthocybiidae				4	1.50
197		Teleostomi				4	1.50
88		Carangidae				2	0.75
138		Coridae				2	0.75
72		Scombridae				2	0.75
174		Echeneidae				2	0.75
57		Holocentridae				1	0.37
124		Kyphosidae				1	0.37
Total						267	100
Family	1	23 Totals					
140	23	5	69	97			
85	6	3	32	41			
222	1	4	16	21			
114	2	2	16	20			
221	7	-	7	14			
97	2	1	8	11			
192	5	-	5	10			
175	-	1	8	9			
180	1	1	6	8			
159	1	1	5	7			
110	1	-	5	6			
106	-	1	4	5			
73	-	1	3	4			
197	-	-	4	4			
88	-	-	2	2			
138	1	-	1	2			
72	-	-	2	2			
174	-	-	2	2			
57	-	-	1	1			
124	-	1	-	1			
Totals	50	21	1962	67			
Family \%		1		2		3	
140		$46.0+$	- 15.1	23.8+-	21.7	35.2+-	6.9
85		$12.0+$	- 10.2	$14.3+-$	18.2	16.3+-	5.4
222		$2.0+$	- 5.0	19.0+-	20.2	8.2+-	4.1
114		$4.0+$	- 6.6	9.5+-	15.7	$8.2+-$	4.1
221		$14.0+$	- 10.8	-	-	$3.6+-$	2.9
97		$4.0+$	- 6.6	$4.8+-$	12.0	$4.1+-$	3.0
192		$10.0+$	- 9.5	-	-	$2.6+-$	2.5
175		-	-	$4.8+-$	12.0	$4.1+-$	3.0
180		$2.0+$	- 5.0	$4.8+-$	12.0	$3.1+-$	2.7
159		$2.0+$	- 5.0	$4.8+-$	12.0	$2.6+-$	2.5
110		$2.0+$	- 5.0	-	-	$2.6+-$	2.5
106		-	-	$4.8+-$	12.0	$2.0+-$	2.2
73		-	-	$4.8+-$	12.0	$1.5+-$	2.0
197		-	-	-	-	$2.0+-$	2.2
88		-	-	-	-	$1.0+-$	1.7
138		$2.0+$	- 5.0	-	-	$0.5+-$	1.3
72		-	-	-	-	$1.0+-$	1.7
174		-	-	-	-	$1.0+-$	1.7
57		-	-	-	-	$0.5+-$	1.3
124		-	-	$4.8+-$	12.0	-	-
Totals		00.0		100.0		100.0	

Table 7: Mangilao Site 25 NISP by Taxon
1 Acanthocybium soland 4
2 Acanthuridae 6
4 Acanthurus sp. 1
14 Balistidae 8
20 Carangoides laticaud 1
25 Caranx sp. 1
30 Cheilinus undulatus 2
32 Coridae/Labridae 26
33 Coryphaena hippurus 92
35 Diodon sp. 18
36 Elasmobranchii 11
38 Epinephelus/Ceph sp. 11
44 Holocentrus sp. 1
45 Istiophoridae/Xiphii 36
48 Kyphosus sp. 1
50 Lethrinidae 23
52 Lutjanus sp. 5
58 Monotaxis granoculis 7
78 Scaridae 125
85 Teleostomi Species A 1
86 Teleostomi Species B 1
87 Teleostomi Species C 1
88 Teleostomi Species D 1
92 Thunnidae/Katsuwonid 2
96 Remora sp. 2
113 Bolbometopon sp. 7
394
Total 394
NISP by Family
57 Holocentridae 1
72 Scombridae 2
73 Acanthocybiidae 4
85 Coryphaenidae 92
88 Carangidae 2
97 Epinephelidae 11
106 Lutjanidae 5
110 Nemipteridae 7
114 Lethrinidae 23
124 Kyphosidae 1
138 Coridae 2
140 Scaridae 132
159 Acanthuridae 7
174 Echeneidae 2
175 Diodontidae 18
180 Balistidae 8
192 Elasmobranchii 11
197 Teleostomi 4
221 Istiophoridae/Xiphii 36
222 Coridae/Labridae 26
Total 394
NISP by Anatomy for Family of Interest = 140 Scaridae
1 Left Dentary 11
2 Right Dentary 10
4 Right Articular 1
7 Left Premaxilla 15
8 Right Premaxilla 12
10 Right Maxilla 1
11 Inferior Pharyngeal Cluster 35
12 Right Superior Pharyngeal Cluster 30
13 Left Superior Pharyngeal Cluster 17

Table 8: Mangilao Site 253 NISP by Taxon
32 Coridae/Labridae 1
33 Coryphaena hippurus 6
35 Diodon sp. 2
38 Epinephelus/Ceph sp. 1
58 Monotaxis granoculis 2
78 Scaridae 5
Total 17
NISP by Family
85 Coryphaenidae 6
97 Epinephelidae 1
110 Nemipteridae 2
140 Scaridae 5
175 Diodontidae 2
222 Coridae/Labridae 1
Total 17
NISP by Anatomy for Family of Interest $=140$ Scaridae
8 Right Premaxilla 2
11 Inferior Pharyngeal Cluster 1
12 Right Superior Pharyngeal Cluster 2

Table 9: Mangilao Site 667 NISP by Taxon
25 Caranx sp. 1
28 Cheilinus sp. 1
32 Coridae/Labridae 8
33 Coryphaena hippurus 6
36 Elasmobranchii 1
38 Epinephelus/Ceph sp. 1
45 Istiophoridae/Xiphii 1
50 Lethrinidae 1
52 Lutjanus sp. 4
78 Scaridae 18
Total 42
NISP by Family
85 Coryphaenidae 6
88 Carangidae 1
97 Epinephelidae 1
106 Lutjanidae 4
114 Lethrinidae 1
138 Coridae 1
140 Scaridae 18
192 Elasmobranchii 1
221 Istiophoridae/Xiphii 1
222 Coridae/Labridae 8
Total 42
NISP by Anatomy for Family of Interest = 140 Scaridae
2 Right Dentary 1
3 Left Articular 1
6 Right Quadrate 3
8 Right Premaxilla 2
11 Inferior Pharyngeal Cluster 6
12 Right Superior Pharyngeal Cluster 4
13 Left Superior Pharyngeal Cluster 1

U

1 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
1 Left Dentary	Acanthocybium soland
1 Left Dentary	Acanthocybium soland
1 Buckler	Acanthurus sp.
1 Right Premaxilla	Coridae/Labridae
1 Right Premaxilla	Coridae/Labridae
1 Left Premaxilla	Teleostomi Species A
1 Dorsal/Erectile Spin	Balistidae
1 Inferior Pharyngeal	Scaridae
2 Inferior Pharyngeal	Scaridae
1 Inferior Pharyngeal	Cheilinus undulatus
1 Tooth/Dental Plates	Monotaxis granoculis
1 Tooth/Dental Plates	Coridae/Labridae
1 Tooth/Dental Plates	Coridae/Labridae
1 Tooth/Dental Plates	Elasmobranchii
1 Right Articular	Lutjanus sp.
1 Left Premaxilla	Lethrinidae
1 Left Superior Pharyn	Scaridae
1 Left Premaxilla	Scaridae
2 Left Premaxilla	Scaridae
1 Right Premaxilla	Scaridae

[^0]

[^1] ハウウ

[^2]

1 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
2 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
1 Inferior Pharyngeal	Scaridae
1 Right Premaxilla	Kyphosus sp.
1 Right Premaxilla	Epinephelus/Ceph sp.
1 Right Premaxilla	Lethrinidae
1 Right Premaxilla	Lethrinidae
1 Right Premaxilla	Coridae/Labridae
1 Right Premaxilla	Coridae/Labridae
1 Right Premaxilla	Coridae/Labridae
1 Left Premaxilla	Coridae/Labridae
1 Left Premaxilla	Scaridae
1 Left Premaxilla	Scaridae
1 Left Premaxilla	Scaridae
1 Right Premaxilla	Scaridae
1 Right Premaxilla	Scaridae
1 Right Premaxilla	Scaridae
1 Left Premaxilla	Istiophoridae/Xiphii
1 Left Premaxilla	Istiophoridae/Xiphii
1 Right Premaxilla	Istiophoridae/Xiphii
1 Left Premaxilla	Istiophoridae/Xiphii
1 Right Premaxilla	Istiophoridae/Xiphii
1 Right Premaxilla	Istiophoridae/Xiphii
1 Left Premaxilla	Istiophoridae/Xiphii
1 Left Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Left Dentary	Istiophoridae/Xiphii
1 Left Dentary	Acanthocybium soland
1 Right Dentary	Lutjanus sp.
1 Right Dentary	Lutjanus sp.

[^3]

[^4]

Buckler	Acanthuridae
1 Caudal Peduncle	Acanthuridae
1 Dorsal/Erectile Spin	Balistidae
1 Right Articular	Scaridae
1 Left Superior Pharyn	Scaridae
1 Left Superior Pharyn	Scaridae
1 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
2 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
1 Right Superior Phary	Scaridae
Inferior Pharyngeal	Bolbometopon sp.
1 Inferior Pharyngeal	Scaridae
1 Inferior Pharyngeal	Coridae/Labridae
1 Inferior Pharyngeal	Coridae/Labridae
1 Inferior Pharyngeal	Scaridae
1 Right Premaxilla	Monotaxis granoculis
1 Left Dentary	Scaridae
1 Left Maxilla	Carangoides laticaud
1 Left Premaxilla	Monotaxis granoculis
1 Left Premaxilla	Monotaxis granoculis
1 Left Premaxilla	Coridae/Labridae
1 Left Premaxilla	Coridae/Labridae
1 Right Premaxilla	Coridae/Labridae
1 Right Premaxilla	Coridae/Labridae
1 Right Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Left Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Inferior Pharyngeal	Scaridae
1 Vertebra	Istiophoridae/Xiphii
1 Dorsal/Erectile Spin	Acanthuridae
1 Left Premaxilla	Diodon sp.
1 Right Premaxilla	Diodon sp.
1 Left Superior Pharyn	Scaridae
5 Zygapophysis	Istiophoridae/Xiphii
1 Left Maxilla	Lethrinidae
1 Tooth/Dental Plates	Elasmobranchii
1 Right Dentary	Scaridae

Ia5
Ia1
Vertebra Coryphaena hippurus
Coryphaena hippurus
Coryphaena hippurus
hippurus Monotaxis granoculis caridae Scaridae Scaridae
Monotaxis granoculis
Diodon sp．
Diodon sp．
Monotaxis granoculis
Diodon sp．
Diodon sp．
Diodon sp．
Coridae／Lab
Epinephelus／Ceph sp．
Right Dentary
Right Superior Phary
Inferior Pharyngeal
Right Premaxilla
Right Premaxilla Right Premaxilla
Right Premaxilla Left Maxilla

Mangilao Square 185
入入入入入入入入入入入入入入入『
 m n $\begin{array}{ll}4 \\ 1 \\ 1 & 1\end{array}$ （1） 1 $q u a r e$
$q u a r e$
quare
quare
quare
quare
quare
quare
quare
$q u a r e$
$q u a r e$
$q u a r e$ UNUNUNUU UNUNU UNUN Mangilao

APPENDIX B

ANALYSIS OF FAUNAL MATERIAL FROM AN ARCHAEOLOGICAL SITE AT YLIG, GUAM

By
B. F. Leach
and
J. M. Davidson

This project was funded (or partly funded) by Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research (JIMAR) and the National Oceanic and Atmospheric Administration (NOAA). The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions.

Museum of New Zealand Te Papa Tongarewa
 Technical Report 39

Analysis of Faunal Material from an Archaeological Site at Ylig, Guam

Leach, B.F.
Davidson, J.M.
Honorary Research Associates, Museum of New Zealand, Te Papa Tongarewa

April, 2006

Not for citation without permission of the authors

This is an unrefereed report intended for limited distribution. Copies or further information may be obtained either from the senior author at the Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand; or from Micronesian Archaeological Research Services, A Guam Non-Profit Educational and Scientific Corporation, P.O. Box 22303 GMF, Guam, 96921 USA.

CONTENTS

ABSTRACT Page 1
INTRODUCTION Page 1
CURATORIAL DETAILS Page 5
METHODS OF FISH BONE ANALYSIS Page 8
BASIC RESULTS OF FISH BONE ANALYSIS Page 9
Table 1: Total MNI by Family for the Ylig Site, All Assemblages Combined Page 9
Table 2: MNI and Percent by Family for the Ylig Site Assemblages Combinedinto Two Periods, and Mixed Provenance.Page 11
THE GENERAL CHARACTER OF FISHING AT THE YLIG SITE Page 13
CONCLUSIONS Page 16
REFERENCES CITED Page 17
APPENDIX: Detailed Results of Fish Analysis from Ylig Page 18
Table 3: Ylig MNI All Assemblages Combined Page 19
Table 4: Ylig MNI in Three Groups: Latte, Pre-Latte, Mixed Page 21
Table 5: NISP by Taxon Page 23
Table 6: NISP by Family Page 24
Table 7: List of Identifications of Fish Remains from Ylig Page 25
Table 8: Analysed Fish Remains from Sites in the Tropical Pacific and NewZealandPage 28

ANALYSIS OF FAUNAL MATERIAL FROM
 AN ARCHAEOLOGICAL SITE AT YLIG, GUAM

Leach, B.F., and Davidson, J.M.
Archaeozoology Laboratory
Museum of New Zealand, Te Papa Tongarewa

Abstract

A collection of approximately 2,000 fish bones from an archaeological site at Ylig on the island of Guam was analysed. Identifiable bones were found in 59 different assemblages. In total, these bones produced a Minimum Number of Individuals of 95 fishes (NISP=170).

Although 15 different families of fish are represented in this collection, all assemblages are dominated by fish belonging to the Coryphaenidae family (dolphinfish). This is highly unusual compared to all other archaeological fish collections so far examined from the Pacific region. These collections are usually dominated by Scaridae. At Ylig, fishes of the Scaridae family are second in abundance. Also notable at Ylig is the presence of fish in the Istiophoridae/Xiphiidae families (swordfish and marlins). It is exceptional to find these species in archaeological sites in the Pacific; the bones from Ylig are matched only in other sites in the Marianas chain of islands. The recovery method was not systematic for all parts of the excavation, so there could be some bias in the relative abundance of different species.

The collection was examined for possible changes through time, but did not show signs of significant variation.

Keywords: ARCHAEOLOGY, ARCHAEOZOOLOGY, FISH, GUAM, MARIANAS, DOLPHINFISH, SWORDFISH, MARLIN

INTRODUCTION

This report presents the results of the analysis of archaeological fish bone from an excavation at a site near the mouth of the Ylig river on the east coast of the island of Guam. The fish remains from this excavation were sent to the authors by Micronesian Archaeological Research Services for identification using the comparative collection and other facilities at the Archaeozoology Laboratory, Museum of New Zealand.

The site was excavated as part of mitigation during reconstruction and widening of the road from Yona to Ylig bridge. The initial focus of the excavation was the recovery of burials; collection of faunal material was not part of the brief. As the work progressed, however, more midden was encountered. Systematic recovery was carried out only for the lower (earlier) deposits.

Figure 1 shows the location of Guam at the bottom end of the Marianas chain of islands. Figure 2 is a map of Guam showing the location of the excavation at Ylig, and Figure 3 shows the precise area on the roadway where the investigation was carried out.

Figure 1: Map of the Mariana Islands with Guam at the extreme south

Figure 2: Plan of Guam. The Ylig area is on the east coast

Figure 3: Map of the Ylig Road Widening Project area. The archaeological excavation is marked 'Burial Site' on the south-east side of the road.

CURATORIAL DETAILS

On arrival at the Archaeozoology Laboratory all faunal material was re-bagged. Figure 4 shows a typical original bag containing the bones. This bag has the original locational information written on it, which would be difficult to replicate many times as individual bones are removed, re-bagged, and identified. It is a fundamental curatorial procedure in archaeology never to destroy locational information relating to any item recovered. Fortunately, this information is available in a database (Excel files) held by Micronesian Archaeological Research Services, cross-referenced by a unique accession number which appears on each bag. In Figure 4 the bag is labelled \#686. The database listing for \#686 shows the following:

Catalogue Number	$\# 686$
Site	Ylig
Test Type [Square]	Between B-39 and B-40
Time Period [Layer]	Pre-Latte

These details constitute the minimum information required for curation. In particular the Site, Square and Layer information constitutes a unique location in time and space known as an Assemblage. This assemblage is the unit used for calculation of MNI (minimum number of individuals during faunal analysis). For example, if one right dentary of Monotaxis grandoculis is found in one such assemblage, and a left dentary of Monotaxis grandoculis is found in another discrete assemblage, then this would count as $\mathrm{MNI}=2$ for this species. Conversely, if one right dentary of Monotaxis grandoculis is found in one such assemblage, and a left dentary of Monotaxis grandoculis is found in the same discrete assemblage, then this would count as $\mathrm{MNI}=1$ for this species, regardless of how big or small the two bones are. Clearly, the identification of what constitutes an assemblage is a very important matter during faunal analysis. Our usual procedure is to define one square metre of one individual layer as an assemblage and use that to define assemblages. In the case of the Ylig collection, we used the spatial designation in the Excel spreadsheet provided by Micronesian Archaeological Research Services.

Since the catalogue number was uniquely cross-referenced to Site, Square and Layer, using the database, this number is ideal to use during re-bagging, to ensure that locational information is not lost. It was therefore written on all bags during the re-bagging process to preserve original provenance information (See Figure 5).

The bones in each original bag were tipped out in a sorting tray and sorted into basic categories, such as fish, bird, turtle, crustacea, and separately re-bagged in self-sealing plastic bags. The nonfish remains consist mainly of fragmented parts of crustacea, of which there was a considerable amount. In the case of fish remains, these were sorted into anatomical parts which are useful for identification to species, genera, or family, and separately re-bagged, and the original unique catalogue number written on each bag. Unidentifiable fish remains were returned to their original bags. More than 90% of archaeological fish bones are fragments of vertebrae and spines, and are not normally used for quantitative analysis. However, they certainly have other scientific value, such as growth rate studies of ancient fishes, and for this reason should be kept for posterity after excavation.

Identification of the fish remains was made using comparative material held at the Archaeozoology Laboratory, Museum of New Zealand Te Papa Tongarewa. As each identification was made, the anatomy (for example $2 \mathrm{LD}=2$ Left Dentaries) and the taxon identified were written on a removable label which was stuck on the bag. At a later stage, when information was entered into

Figure 4: Copy of a typical original bag before re-bagging, including catalogue number \#686

Figure 5: A typical self-sealing plastic bag after re-bagging. The original catalogue number \#104 preserves the unique location details. The identification is written on a removable label on the outside of the bag (Right premaxilla Caranx sp.). The circled number 94 is the bag number in the Kupenga fish bone database.
a computer database (known as Kupenga), a reference number was allocated from the database, and this is written on the bag, and circled (See Figure 5). This process ensures that there is a direct link between the two databases on every single bag. Should a more precise identification be made at some later stage, or an error identified in anatomy or species, one can return to the precise point in the database, make any corrections necessary and then update all tables using suitable software held by the authors.

In a few cases, bones belonged to species not present in the Archaeozoology Laboratory. When this happens 'Unidentified Species A' is entered. In the case of Ylig, two different unidentified species were found, and labelled A and F respectively. These occur in the category Teleostomi in Tables in this report. Only a few of the standard fish bones from Ylig could not be identified.

METHODS OF FISH BONE ANALYSIS

The methods of analysis closely follow the technique developed in New Zealand for the treatment of archaeological fish bone assemblages from the Pacific Islands generally. This has been described elsewhere (Leach and Davidson, 1977; Leach 1986, 1997) so only a few details need to be given here. The assemblages covered in this report are quite small, which makes it difficult to observe significant temporal variation.

The identifiable fish bones were sorted anatomically and re-bagged. Taking each part of the anatomy in turn, bones were then sorted into taxonomic categories, and identified with reference to the comparative collection, which contains mounted bones of over 300 Pacific species. The nomenclature and taxonomy largely follow Munro (1967).

It is important to note that all identifications are made to the lowest taxonomic level possible. The level at which tropical Pacific fish bone can be identified varies greatly. For example, amongst the Holocentridae family, the cranial anatomy, particularly the dentary, of Ostichthys murdjan is very distinctive. Holocentrus ruber is also fairly distinctive, but a bone apparently belonging to this species would not be entered as such on a bag. Instead the identification would be entered as Holocentrus cf. ruber, indicating that this species is the most similar in the comparative collection, but although the genus is certain the species is not. Other bone specimens belonging to this family can only be identified to the level of Holocentrus sp. At the other end of the scale, with one exception, cranial bones of the Scaridae family are not identified to a level lower than family. The exception is Bolbometopon muraticus, which is of exceptional size. Fleming has shown that close familiarity with the cranial anatomy of the Scaridae permits identification to sub-family without great difficulty, and that the bucktooth characteristics of Calotomus spp. are also distinctive (Fleming, 1986: 167 ff.). However, the different Scaridae species have similar habitats and are caught by similar methods. From the point of view of studying human behaviour, identifying to species is therefore of little value.

The calculation of minimum numbers follows the general technique of Chaplin (1971), and is further discussed by Leach $(1986,1997)$. No attempt is made to increase MNI by taking into account observed size mis-matches. For comparative purposes, NISP values were also calculated and given in this report.

BASIC RESULTS OF FISH BONE ANALYSIS

One hundred and seventy bones were able to be identified in 59 different assemblages from the Ylig site. The Minimum Number of Individuals (MNI) for each type of fish was calculated and these details are provided in the Appendix, and summarised by family in Tables 1 and 2 (see also Figures 6 and 7). The bones were generally in good condition.

Table 1: Total MNI by Family for the Ylig Site, All Assemblages Combined

Family Name	MNI	$\mathbf{\%}$		
Coryphaenidae	37	38.9	\pm	10.4
Scaridae	18	18.9	\pm	8.5
Acanthuridae	8	8.4	\pm	6.2
Epinephelidae	6	6.3	\pm	5.5
Lethrinidae	5	5.3	\pm	5.1
Istiophoridae/Xiphiidae	4	4.2	\pm	4.6
Lutjanidae	4	4.2	\pm	4.6
Carangidae	3	3.2	\pm	4.1
Coridae/Labridae	2	2.1	\pm	3.4
Elasmobranchii	2	2.1	\pm	3.4
Teleostomi	2	2.1	\pm	3.4
Sphyraenidae	1	1.1	\pm	2.6
Balistidae	1	1.1	\pm	2.6
Diodontidae	1	1.1	\pm	2.6
Holocentridae	1	1.1	\pm	2.6
Total	$\mathbf{9 5}$	$\mathbf{1 0 0}$		

Confidence limits are provided for each percentage in this and other Tables in this report. A percentage statistic (or proportions, whose sum=1.0) is a measure of relative abundance in the sense that when one percentage changes, so do all the others, so that the sum remains 100.0. The significance of any difference in relative abundance between two sets is easily tested by calculating the error range of each percentage (or proportion) to see if the two sets overlap or not. The calculation of the confidence limit of a proportion is as follows (Snedecor and Cochran 1967: 210-211; Leach and de Souza 1979: 32):

$$
\mathrm{C}=\mathrm{K} *(\mathrm{P} *(1.0-\mathrm{P}) / \mathrm{N})^{0.5}+1 / 2 \mathrm{~N}
$$

C is the confidence limit, P is the proportion, N the sample size, and K is a constant related to the chosen probability level ($=1.96$ for 95% confidence, following the distribution of Student's t). The factor $1 / 2 \mathrm{~N}$ is added as a correction for continuity, which is important for small samples. For example, If $\mathrm{N}=128$ and there are 7 items with some characteristic, then $\mathrm{P}=0.054688$, and $\mathrm{C}=0.0433$. So the 95% confidence range can be expressed as $5.47 \% \pm 4.33 \%$. For small samples, the distribution of Student's t must be consulted to adjust the value of C accordingly. For example if $\mathrm{N}=35$, C will be 2.02 , not 1.96 .

Ylig Fish MNI

Figure 6: The abundance of different families of fish at the Ylig site.

Table 2: MNI and Percent by Family for the Ylig Site Assemblages Combined into Two Periods, and Mixed Provenance.

$$
1=\text { Pre-Latte, } 2=\text { Latte, } 3=\text { Mixed }
$$

Family	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Total	$\mathbf{\%}$
Coryphaenidae	5	14	18	37	38.95
Scaridae	3	9	6	18	18.95
Acanthuridae	-	5	3	8	8.42
Epinephelidae	2	4	-	6	6.32
Lethrinidae	-	2	3	5	5.26
Istiophoridae/Xiphiidae	-	1	3	4	4.21
Lutjanidae	1	2	1	4	4.21
Carangidae	-	1	2	3	3.16
Coridae/Labridae	-	-	2	2	2.11
Elasmobranchii	1	-	1	2	2.11
Teleostomi	1	-	1	2	2.11
Sphyraenidae	-	1	-	1	1.05
Balistidae	1	-	-	1	1.05
Diodontidae	-	-	1	1	1.05
Holocentridae	-	1	-	1	1.05
Total	$\mathbf{4}$	$\mathbf{4 0}$	$\mathbf{4 1}$	$\mathbf{9 5}$	$\mathbf{1 0 0}$
		$\mathbf{1}$	$\mathbf{2}$		$\mathbf{3}$
Family		35.7 ± 30.9	35.0 ± 16.4	43.9 ± 16.8	
Coryphaenidae		21.4 ± 26.9	22.5 ± 14.5	14.6 ± 12.3	
Scaridae	-	12.5 ± 11.8	7.3 ± 9.4		
Acanthuridae		14.3 ± 23.5	10.0 ± 10.8	-	
Epinephelidae	-	5.0 ± 8.2	7.3 ± 9.4		
Lethrinidae	-	2.5 ± 6.2	7.3 ± 9.4		
Istiophoridae/Xiphiidae		7.1 ± 18.2	5.0 ± 8.2	2.4 ± 6.1	
Lutjanidae	-	2.5 ± 6.2	4.9 ± 8.0		
Carangidae	-	-	4.9 ± 8.0		
Coridae/Labridae		7.1 ± 18.2	-	2.4 ± 6.1	
Elasmobranchii	7.1 ± 18.2	-	2.4 ± 6.1		
Teleostomi	-	2.5 ± 6.2	-		
Sphyraenidae	7.1 ± 18.2	-	-		
Balistidae	-	-	2.4 ± 6.1		
Diodontidae		$\mathbf{-}$	2.5 ± 6.2	-	
Holocentridae	$\mathbf{1 0 0 . 0}$	$\mathbf{1 0 0 . 0}$	$\mathbf{1 0 0 . 0}$		
Totals					

Figure 7: The relative abundance of fish at different time periods at Ylig.

Statistical errors for each percentage are given in Tables 1 and 2 (for details of this see Table 1). These assist evaluation of the significance of any observed difference between time periods. Careful examination of Table 2 reveals that no change in abundance from Pre-Latte to Latte period is significant.

THE GENERAL CHARACTER OF FISHING AT THE YLIG SITE

The fish remains at Ylig belong to at least 15 different families (Table 1, Figure 6). This is fairly typical for a relatively small Pacific assemblage. However, the composition of the collection is most unusual. It is completely dominated by dolphinfish (Coryphaenidae), with only one other family, parrotfish (Scaridae), contributing more than ten percent of MNI. Scarids are usually the most common type of fish in archaeological sites in the Pacific. The six most common fish families at Ylig are shown in Figure 8.

Is the high relative abundance of dolphinfish real? There are two possible reasons why the number might be inflated: preferential collection of large vertebrae, and the use of vertebrae to calculate MNI. The dolphinfish at Ylig were mainly identified from their distinctive vertebrae, although some cranial bones were also present (listed in Table 7 in the Appendix).

Although faunal material was not systematically collected throughout the excavations, recovery from the earlier, deeper deposits was consistent. The policy was to keep all material retained by a quarter-inch-mesh sieve (Yee 2006: pers. comm.). The relative abundance of dolphinfish in the earlier 'PreLatte' time period is not biased by preferential collection. Figure 7 shows a consistently high representation of dolphinfish in the three sub-collections (Latte, Pre-Latte, and Mixed), providing confidence that the high relative abundance throughout the site is not a result of preferential collection.

In calculating MNI, it is preferable to use only cranial bones or other special bones such as caudal peduncles, where one bone equals one fish. Items such as vertebrae, teeth, and some spines can cause MNI to be inflated. However, such bones are sometimes the only evidence of the presence of certain species. In the case of dolphinfish, which are so rare in Pacific archaeological sites, we identify the distinctive vertebrae, bearing in mind the possibility of inflated MNI. We apply the same methodology to all assemblages, so that if there is bias, it is consistent from layer to layer and site to site. In any one site, such as Ylig, the method should reveal any changes in relative abundance through time, even if the overall relative number is inflated. The same applies to intersite comparisons. One could also argue that the heads of some of these large dangerous fish might be cut off before bringing the fish home, thereby greatly reducing the number of cranial bones deposited in the midden.

Therefore, although it is possible that the MNI of dolphin fish is inflated at Ylig, there is no doubt that these fish were being systematically taken in some numbers by the inhabitants throughout the period of use of the area excavated. Dolphinfish are migratory, and are most abundant in the Guam waters from February to April, although a few may be taken all year round (Amesbury and Myers 1982: 49). The most effective way of catching them is by trolling a bait or lure over deep offshore waters.

It is notable that the Ylig collection also contains at least one species from the Istiophoridae/Xiphiidae families (marlin and swordfish). These fishes were also identified mainly from their distinctive vertebrae and zygapophyses, but again, one cranial bone was present.

Figure 8: The most abundant types of fish at Ylig come from six families, examples of which are shown here.

Figure 9: The relative abundance of swordfish/marlin and dolphinfish. Only 8 sites of more than 70 in the database (Table 8) have significant archaeological remains of fishes of these families. The Ylig site has by far the greatest abundance of dolphinfish so far seen in Pacific island archaeological sites.

We have previously discussed in some detail the prehistoric capture of marlin and dolphinfish in the Marianas (Davidson and Leach 1988; Leach et al. 1988a, 1988b; Leach and Davidson 2006). Ylig provides further supporting evidence that this big game fishing was the rule, rather than the exception in these islands (Figure 9).

Despite the importance of large game fish at Ylig, there are no tuna remains among the identified bones. This is in keeping with other assemblages from the Marianas, in which tuna are uncommon.

Another large fish represented at Ylig is the humphead parrotfish (Bolbometopon muraticus). This is also unusual in our experience of Pacific archaeological fish bone collections. It is not clear how these fish, which grow up to about 1.2 m and are very strong, were caught in pre-European times.

Acanthuridae (unicornfish) are the third most numerous family at Ylig. These fish are present in many Pacific assemblages, but not usually in such high relative abundance. The only effective way of catching them is by netting in inshore waters around coral thickets. It is likely that most of the scarids and Balistidae (triggerfish) were also taken in this way.

Epinephelidae (groupers and rock cod), Lethrinidae (emperorfish), and Lutjanidae (Pacific snapper and sea perch) are usually taken on a baited hook. Although this method was obviously used by the people of Ylig, it was apparently not as important as netting and pelagic trolling. Coridae/Labridae (wrasses and tuskfish) were probably also caught by baited hook, although netting would also capture them.

Of the other fish at Ylig, Carangidae (trevallies) and the single barracuda (Sphyraenidae) would be taken by trolling and the Diodontidae (porcupinefish) and Holocentridae (squirrelfish/soldierfish) by general foraging.

Figure 7 shows the relative abundance of fish from the Latte and Pre-Latte periods and from 'Mixed contexts'. The last include assemblages from contexts described as Latte?, Latte/Disturbed, Latte/Pre-Latte, Pre-Latte/Disturbed, Disturbed, and ?.

There are no discernible differences between the three subgroups. The Latte subgroup is smaller than the other two, because midden was not collected from upper layers during the first phases of the project. The relatively large subgroup from Mixed (or disturbed) contexts is due to the nature of the project. However, the similarity between the three groups suggests that fishing practices at Ylig were probably consistent throughout the use of the site.

CONCLUSIONS

This collection of fish remains from a mitigation project at Ylig on the island of Guam has added further support to our understanding of prehistoric fishing behaviour in the Mariana Islands. In particular, the Ylig assemblage reflects a strong emphasis on the hunting of dolphin fish and some hunting of marlin/swordfish throughout the occupation of the site. Netting, fishing with baited hook and trolling for smaller pelagic fish were also practised at Ylig.

REFERENCES CITED

Amesbury, S.S. and Myers, R.F. 1982. Guide to the coastal resources of Guam. Volume 1, the fishes. University of Guam Marine Laboratory, Contribution Number 173. University of Guam Press.

Chaplin, R.E. 1971. The study of animal bones from archaeological sites. Seminar Press, London.
Davidson, J.M. and Leach, B.F. 1988. Chapter 15: Fishing. pp. 335-356 In: Butler, B.M (ed.) Archaeological investigations on the north coast of Rota, Mariana Islands. Micronesian Archaeological Survey Report No. 23. Southern Illinois University at Carbondale, Centre for Archaeological Investigations, Occasional Paper 8.

Fleming, M.A. 1986. The Scaridae family in Pacific prehistory. Unpublished MA Thesis, Anthropology, University of Otago.

Leach, B.F. 1986. A method for analysis of Pacific island fishbone assemblages and an associated data base management system. Journal of Archaeological Science 13 (2): 147-159.

Leach, B.F. 1997. A guide to the identification of fish remains from New Zealand archaeological sites. New Zealand Journal of Archaeology Special Publication. 129 pp.

Leach, B.F. and Davidson, J.M. 1977. Fishing methods and seasonality at Paremata (N160/50). New Zealand Archaeological Association Newsletter 20 (3): 166-175.

Leach, B.F. and Davidson, J.M. 2006. Analysis of faunal material from an archaeological site complex at Mangilao, Guam. Museum of New Zealand Te Papa Tongarewa Technical Report 38.

Leach, B.F. and de Souza, P. 1979. The changing proportions of Mayor Island obsidian in New Zealand prehistory. New Zealand Journal of Archaeology 1:29-51.

Leach, B.F., Fleming, M., Davidson, J.M., Ward, G.K. and Craib, J. 1988a. Prehistoric fishing at Mochong, Rota, Mariana Islands. Man and Culture in Oceania 4: 31-62.

Leach, B.F., Horwood, M., Smith, I.W.G. and McGovern-Wilson, R. 1988b. Analysis of faunal material from Songsong village, Rota, Mariana Islands. USA Historic Preservation Office.

Munro, I.S.R. 1967. The fishes of New Guinea. Department of Agriculture, Stock and Fisheries, Port Moresby, New Guinea.

Snedecor, G.W. and Cochran, W.G. 1967. Statistical methods. Iowa State University Press.
Yee, S. 2006. Personal Communication, 19 April 2006. Supervisory Archaeologist, Guam Office, International Archaeological Research Institute, Inc.

APPENDIX: Detailed Results of Fish Analysis from Ylig

The Tables in this Appendix are printouts from the Kupenga Fishbone Database in the Archaeozoology Laboratory at the Museum of New Zealand Te Papa Tongarewa and should be read as follows:

Tables 3 to 7 provide details of the identifications of fish remains from Ylig.
Table 3 provides totals for the whole site.
At the head of each Table appears a list of the assemblages (space/time units) which have been combined together to form each column in the table. Referring to Table 3, an example is:
(694, 1) $=$ YLIG002 above B-52 fill, Latte/Pre-Latte
'YLIG' is the code in the Kupenga Fishbone Database for the Ylig site. '694, 1' is the code in the database which identifies the unique space/time assemblage in the Ylig Site: ‘Above B-52 fill, Latte/-Pre Latte'. The code ' 002 ' attached to YLIG shows that this spatial provenance is the second spatial unit listed for Ylig in the database. Any codes appearing with '?' symbol refer to an unknown stratigraphic provenance in the site.

Once each column has been defined in this manner, this is followed by the listing of the Minimum Number of Individuals (MNI) according to taxon and the percent MNI of each taxon for each of the columns identified at the head of the Table.

Database codes for Taxon and Family also appear in the Tables below. For example, In Table 3, Taxon \#6 = Agrioposphyraena barracuda. Further down in the Family tabulation Family \#65 refers to Sphyraenidae.

The figures are then presented according to family in decreasing order of abundance (as in Table 1 and Figure 6). The last part of this Table shows the systematic error associated with each percentage.

Table 4 presents the same information, now broken down into two time periods and mixed provenance, as described in the text. In Table $4,1=$ Pre-Latte, $2=$ Latte, $3=$ Mixed Provenance.

Table 5 presents NISP (number of identified specimens) from the Ylig site according to taxon.
Table 6 presents NISP according to family and shows the breakdown by anatomy of identified specimens of Scaridae.

Table 7 lists all individual identifications from the Ylig site according to excavation unit, layer, anatomy and taxon.

Table 3: Ylig MNI All Assemblages Combined

Overall Taxon \#	als for these Assemb Taxon Name	MNI	\%
2	Acanthuridae	8	8.42
6	Agrioposphyra barrac	1	1.05
14	Balistidae	1	1.05
25	Caranx sp.	3	3.16
32	Coridae/Labridae	2	2.11
33	Coryphaena hippurus	37	38.95
34	Diodon hystrix	1	1.05
36	Elasmobranchii	2	2.11
38	Epinephelus/Ceph sp.	6	6.32
44	Holocentrus sp.	1	1.05
45	Istiophoridae/Xiphii	4	4.21

50	Lethrinidae	5	5.26
52	Lutjanus sp.	4	4.21
78	Scaridae	17	17.89
85	Teleostomi Species A	1	1.05
90	Teleostomi Species F	1	1.05
113	Bolbometopon sp.	1	1.05
Totals		95	100

Taxon 1 Totals

Family \#	Family Name	MNI	\%
85	Coryphaenidae	37	38.95
140	Scaridae	18	18.95
159	Acanthuridae	8	8.42
97	Epinephelidae	6	6.32
114	Lethrinidae	5	5.26
221	Istiophoridae/Xiphii	4	4.21
106	Lutjanidae	4	4.21
88	Carangidae	3	3.16
222	Coridae/Labridae	2	2.11
192	Elasmobranchii	2	2.11
197	Teleostomi	2	2.11
65	Sphyraenidae	1	1.05
180	Balistidae	1	1.05
175	Diodontidae	1	1.05
57	Holocentridae	1	1.05
Total		95	100

Family	1 Totals	
85	37	37
140	18	18
159	8	8
97	6	6
114	5	5
221	4	4
106	4	4
88	3	3
222	2	2
192	2	2
197	2	2
65	1	1
180	1	1
175	1	1
57	1	1
Totals	95	95

Family \%	1	
85	$38.9+-$	10.4
140	18.9+-	8.5
159	$8.4+-$	6.2
97	$6.3+-$	5.5
114	$5.3+-$	5.1
221	$4.2+$ -	4.6
106	$4.2+-$	4.6
88	$3.2+-$	4.1
222	2.1+-	3.4
192	2.1+-	3.4
197	2.1+-	3.4
65	1.1+-	2.6
180	1.1+-	2.6
175	1.1+-	2.6
57	1.1+-	2.6
Totals	100.0	

Table 4: Ylig MNI in Three Groups: Latte, Pre-Latte, Mixed
Column Numbers and Equivalent Assemblage Reference Numbers
Column 1

2) $=$ YLIG019 ETP-1, Latte

1) $=$ YLIG025 ETP-17, Latte
2) $=$ YLIG038 TU-1, Latte
3) $=$ YLIG039 TU-2, Latte
4) $=$ YLIG040 TU-3, Latte
5) $=$ YLIG042 TU-6, Latte
6) $=$ YLIG050 WTP-12, Latte
7) $=$ YLIG006 B-40 pit, Pre-Latte
8) $=$ YLIG008 B-52 fill, Pre-Latte
9) $=$ YLIG009 B-54 fill, Pre-Latte
10) $=$ YLIG010 B-55 fill, Pre-Latte
11) = YLIGO11 below B-52 in ashy soil, Pre-Latte
12) $=$ YLIG012 Between B-39 and B-40, Pre-Latte
13) $=$ YLIGO17 ETP Test Trench 3 meters W of ETP 20, Pre-Latte
14) $=$ YLIG018 ETP Test Trench S of GPA pole, Pre-Latte
15) $=$ YLIG035 Near B-38, Pre-Latte
16) $=$ YLIG048 WTP-11, Pre-Latte
17) $=$ YLIG052 WTP-13-15, Pre-Latte
18) $=$ YLIG053 WTP-14, Pre-Latte
19) = YLIG054 WTP-15, Pre-Latte
20) $=$ YLIG061 WTP-2, Pre-Latte
21) $=$ YLIG073 WTP-30, Pre-Latte
22) $=$ YLIG075 WTP-8, Pre-Latte
23) $=$ YLIG077 WTP-8-9, Pre-Latte
24) = YLIG078 WTP-9, Pre-Latte
25) $=$ YLIG079 WTP-9-10, Pre-Latte
26) $=$ YLIG029 ETP-27-29, Latte?
27) $=$ YLIG040 TU-3, Latte/Disturbed
28) = YLIG002 above B-52 fill, Latte/Pre-Latte
29) $=$ YLIG023 ETP-15, Latte/Pre-Latte
30) $=$ YLIG038 TU-1, Latte/Pre-Latte
31) = YLIG039 TU-2, Latte/Pre-Latte
32) $=$ YLIG040 TU-3, Latte/Pre-Latte
33) = YLIG061 WTP-2, Latte/Pre-Latte
34) $=$ YLIG038 TU-1, Pre-Latte/Disturbed
35) = YLIG013 Clear above B-38 pit, ?
36) = YLIG014 East Test Trench, ?
37) $=$ YLIG020 ETP-10, ?
38) $=$ YLIG031 ETP-30, ?
39) $=$ YLIG047 WTP 8-10, ?
40) $=$ YLIG049 WTP-11-15, ?
41) = YLIG051 WTP-13, ?
42) $=$ YLIG057 WTP-17, ?
43) $=$ YLIG059 WTP-19, ?
44) $=$ YLIG061 WTP-2, ?
45) $=$ YLIG062 WTP-20, ?
46) = YLIG065 WTP-22, ?
47) $=$ YLIG068 WTP-25, ?
48) $=$ YLIG069 WTP-26, ?
49) = YLIG070 WTP-27, ?
50) $=$ YLIG020 ETP-10, Disturbed
51) $=$ YLIG022 ETP-11, Disturbed
52) = YLIG030 ETP-29, Disturbed

Overall Taxon \#	als for these Assemb Taxon Name	MNI	\%
2	Acanthuridae	8	8.42
6	Agrioposphyra barrac	1	1.05
14	Balistidae	1	1.05
25	Caranx sp.	3	3.16
32	Coridae/Labridae	2	2.11
33	Coryphaena hippurus	37	38.95
34	Diodon hystrix	1	1.05
36	Elasmobranchii	2	2.11
38	Epinephelus/Ceph sp.	6	6.32
44	Holocentrus sp.	1	1.05
45	Istiophoridae/Xiphii	4	4.21
50	Lethrinidae	5	5.26
52	Lutjanus sp.	4	4.21
78	Scaridae	17	17.89
85	Teleostomi Species A	1	1.05
90	Teleostomi Species F	1	1.05
113	Bolbometopon sp.	1	1.05
Totals		95	100

Taxon	1	2	3	Totals
2	-	5	3	8
6	-	1	-	1
14	1	-	-	1
25	-	1	2	3
32	-	-	2	2
33	5	14	18	37
34	-	-	1	1
36	1	-	1	2
38	2	4	-	6
44	-	1	-	1
45	-	1	3	4
50	-	2	3	5
52	1	2	1	4
78	2	9	6	17
85	1	-	-	1
90	-	-	1	1
113	1	-	-	1
Totals	14	40	41	95

Family \#	ls for these Assemb Family Name	MNI	\%
85	Coryphaenidae	37	38.95
140	Scaridae	18	18.95
159	Acanthuridae	8	8.42
97	Epinephelidae	6	6.32
114	Lethrinidae	5	5.26
221	Istiophoridae/Xiphii	4	4.21
106	Lutjanidae	4	4.21
88	Carangidae	3	3.16
222	Coridae/Labridae	2	2.11
192	Elasmobranchii	2	2.11
197	Teleostomi	2	2.11
65	Sphyraenidae	1	1.05
180	Balistidae	1	1.05
175	Diodontidae	1	1.05
57	Holocentridae	1	1.05
Total		95	100

Family	1	2	3 Tot	als			
85	5	14	18	37			
140	3	9	6	18			
159	-	5	3	8			
97	2	4	-	6			
114	-	2	3	5			
221	-	1	3	4			
106	1	2	1	4			
88	-	1	2	3			
222	-	-	2	2			
192	1	-	1	2			
197	1	-	1	2			
65	-	1	-	1			
180	1	-	-	1			
175	-	-	1	1			
57	-	1	-	1			
Totals	14	40	41	95			
Family \%		1		2		3	
85		$35.7+-$	30.9	35.0+-	16.4	43.9+-	16.8
140		21.4+-	26.9	22.5+-	14.5	14.6+-	12.3
159		-	-	$12.5+-$	11.8	$7.3+-$	9.4
97		14.3+-	23.5	10.0+-	10.8	-	-
114		-	-	$5.0+-$	8.2	$7.3+-$	9.4
221		-	-	$2.5+-$	6.2	$7.3+-$	9.4
106		7.1+-	18.2	5.0+-	8.2	$2.4+-$	6.1
88		-	-	$2.5+-$	6.2	4.9+-	8.0
222		-	-	-	-	$4.9+-$	8.0
192		7.1+-	18.2	-	-	$2.4+-$	6.1
197		7.1+-	18.2	-	-	$2.4+-$	6.1
65		-	-	$2.5+-$	6.2	-	-
180		7.1+-	18.2	-	-	-	-
175		-	-	-	-	$2.4+-$	6.1
57		-	-	$2.5+-$	6.2	-	-
Totals		00.0		100.0		100.0	

Table 5: NISP by Taxon

2 Acanthuridae 11
6 Agrioposphyra barrac 1
14 Balistidae 1
25 Caranx sp. 3
32 Coridae/Labridae 2
33 Coryphaena hippurus 99
34 Diodon hystrix 2
36 Elasmobranchii 2
38 Epinephelus/Ceph sp. 7
44 Holocentrus sp. 1
45 Istiophoridae/Xiphii 5
50 Lethrinidae 5
52 Lutjanus sp. 4
78 Scaridae 24
85 Teleostomi Species A 1
90 Teleostomi Species F 1
113 Bolbometopon sp. 1
170

Table 6: NISP by Family
57 Holocentridae 1
65 Sphyraenidae 1
85 Coryphaenidae 99
88 Carangidae 3
97 Epinephelidae 7
106 Lutjanidae 4
114 Lethrinidae 5
140 Scaridae 25
159 Acanthuridae 11
175 Diodontidae 2
180 Balistidae 1
192 Elasmobranchii 2
197 Teleostomi 2
221 Istiophoridae/Xiphii 5
222 Coridae/Labridae 2
Total 170
NISP by Anatomy for Family of Interest = 140 Scaridae
1 Left Dentary 2
2 Right Dentary 3
4 Right Articular 1
8 Right Premaxilla 4
11 Inferior Pharyngeal Cluster 3
12 Right Superior Pharyngeal Cluster 5
13 Left Superior Pharyngeal Cluster 7

	Pre-Latte
	Pre-Latte

Epinephelus/Ceph sp.
Coryphaena hippurus Coryphaena hippurus Lutjanus sp. Coryphaena hippurus Coryphaena hippurus
Coryphaena hippurus Coryphaena hippurus Coryphaena hippurus Coryphaena hippurus Coryphaena hippurus
Coryphaena hippurus Coryphaena hippurus Coryphaena hippurus snanddtu eureqdKiop
snanddut eureudKao snandațч euәeчdKaoD

 snanddị euәeчdKioD
snanddч̣ euәeчdKaoD
 snanddṬ euərчdKıaD Istiophoridae/Xiphii Istiophoridae/Xiphii
Acanthuridae Acanthuridae
Acanthuridae Caranx sp.
Coridae/Labridae Teleostomi Species F Teleostomi Species F Scaridae
 $\begin{array}{cc}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ -1 & -1 \\ -1 & 1 \\ 0 & 0 \\ U & 0 \\ U & 0\end{array}$ Scaridae
Scaridae Scaridae
Elasmobranchii
Scaridae Coridae/Labridae Lethrinidae Lethrinidae
Coryohaena Coryphaena hippurus

Pre-Latte	1 Left Articular
Pre-Latte	1 Left Articular
Pre-Latte	1 Right Articular
Pre-Latte	1 Left Maxilla
Pre-Latte	1 Left Maxilla
?	2 Vertebra
Latte/Pre-Latte	6 Vertebra
Disturbed	8 Vertebra
?	3 Vertebra
Disturbed	3 Vertebra
Disturbed	2 Vertebra
?	2 Vertebra
Disturbed	2 Vertebra
Latte/Pre-Latte	2 Vertebra
?	2 Vertebra
Pre-Latte/Disturbed	2 Vertebra
Disturbed	2 Vertebra
Latte/Pre-Latte	1 Vertebra
Disturbed	1 Vertebra
Latte/Pre-Latte	1 Vertebra
?	1 Vertebra
?	1 Vertebra
?	1 Vertebra
Disturbed	1 Vertebra
Latte?	1 Vertebra
?	1 Vertebra
Disturbed	2 Zygapophysis
?	1 Buckler
?	1 Buckler
Disturbed	1 Caudal Peduncle
Latte/Pre-Latte	1 Vertebra
Latte/Pre-Latte	1 Caudal Peduncle
?	1 Right Dentary
?	1 Left Premaxilla
Disturbed	1 Left Superior P
Disturbed	2 Right Superior
Disturbed	1 Left Superior Ph
Disturbed	1 Right Superior
Disturbed	2 Inferior Pharyng
?	1 Inferior Pharyng
Landslide above	1 Tooth/Dental Pla
Latte/Pre-Latte	1 Left Dentary
?	1 Right Dentary
?	1 Right Dentary
Latte/Pre-Latte	1 Right Dentary
Latte/Pre-Latte	1 Left Premaxilla

Latte/Pre-Latte
Latte/Pre-Latte
Latte/Disturbed
?
Disturbed
?
Latte
Latte
Latte
Latte/Pre-Latte
Latte
Latte
Latte
Latte
Latte
Latte
Latte
Latte
Latte
Latte/Pre-Latte
Latte
Latte
Latte
Latte
Latte

Leach and Davidson: Analysis of Fish remains from Ylig

Table 8: Analysed Fish Remains from Sites in the Tropical Pacific and New Zealand

Fish remains from these archaeological sites have been analysed using strictly controlled methods, and the results are contained in the database at the Archaeozoology Laboratory, Te Papa Tongarewa Museum of New Zealand.

1: Tropical Pacific Islands

Abbrev.Site Name

ANAI Anaio, Ma'uke, Cook Islands
KALO Kaloko, Hawaii
DONG Dongan, Papua New Guinea
MOT2 Motupore, Papua New Guinea (Groube)
NGAA Ngaaitutaki, Mangaia, Cook Islands
TEPA Tepaopao, Mangaia, Cook Islands
ERUA Erua, Mangaia, Cook Islands
FAIS Fais, Caroline Islands
TIWI Tiwi Cave Site, New Caledonia
KIRI Nikunau Island, Kiribati
HANE Hane, Ua Huka, Marquesas
VATA Vatcha Site Ch1 New Caledonia
VATB Vatcha Site Ch2 New Caledonia
VATC Vatcha Sondage A New Caledonia
VATD Vatcha Sondage B New Caledonia
VATE Vatcha Sondage C New Caledonia
LAPI Lapita, New Caledonia, Sand
FAHA Fa‘ahia Sinoto Excavation
FAHB Fa‘ahia Navorro Excavation
PWEK Pwekina, New Caledonia
LOYA Mouli A, Loyalty Islands
LOYB Mouli B, Loyalty Islands
LOYC Hnenigec, Loyalty Islands
LOYD Peete, Loyalty Islands
LOYE Hnajoisisi, Loyalty Islands
LOYF Keny, Loyalty Islands
LOYG Nonime, Loyalty Islands
CIKO Cikobia, Site 006, Fiji
GAAS Mangaas, Efate, Vanuatu
IFOO Ifo, Erromango, Vanuatu
PONA Ponamla, Erromanga, Vanuatu
MAL1 Ndavru, Malekula, Vanuatu
MAL2 Malua Bay, Malekula, Vanuatu
MAL3 Woplamplam, Malekula, Vanuatu
MAL4 Wambraf, Malekula, Vanuatu
MAL5 Yalu, Malekula, Vanuatu
MAL6 Navaprah, Malekula, Vanuatu
CIK1 Cikobia, Site 001, Fiji
CIK2 Cikobia, Site 005, Fiji
NAVA Navatu, Fiji
CIK3 Cikobia, Site 04, Fiji
CIK4 Cikobia, Site 090, Fiji
CIK5 Cikobia, Site 037, Fiji
CIK6 Cikobia, Site 047, Fiji
CIK7 Cikobia, Site 087, Fiji
KURI Kurin, Loyalty Islands
LOYH Hnajoisisi, Hna Cave, Loyalty Islands
ARAP Arapus, Efate, Vanuatu
TIO1 Tiouande Site 5, New Caledonia

50 TIO2 Tiouande Site 14, New Caledonia
51 KULU Kulu, Beqa, Fiji
52 BUAN Buangmerabak, New Ireland
53 URUN Urunao, Guam
54 MANGMangaia Mound, Tongatapu
55 GOLF Mangilao Golf Course, Site 25, Guam
56 GOLG Mangilao Golf Course, Site 253, Guam
57 GOLH Mangilao Golf Course, Site 667, Guam
58 YLIG Ylig,Guam
59 XXXX Balof Cave, New Ireland, Papua New Guinea (White)
60 XXXX Pagat, Guam (Craib)
61 XXXX Kapingamarangi, Caroline Is (Leach)
62 XXXX Leluh, Kosrae (Cordy)
63 XXXX Motupore 1, Port Morseby, Papua New Guinea (Allen)
64 XXXX Nan Madol, Ponape (Athens)
65 XXXX Nukuoro, Caroline Is (Davidson)
66 XXXX Palau (Masse)
67 XXXX Ponape (*)
68 XXXX Te Ana Pua, Ua Pou, Marquesas (Ottino)
69 XXXX RF2 Reef Islands, Solomons (Green)
70 XXXX Mochong, Rota, Mariana Is (Craib)
71 XXXX RotaSIU, Mariana Is (Butler)
72 XXXX Songsong, Rota, Mariana Is (McManamon)
73 XXXX Taumako, Solomons (Leach)
74 XXXX Tinian Mariana Is (*)
75 XXXX Vaito'otea, Huahine, Society Is (Sinoto)
76 XXXX Afenta, Saipan, Mariana Is (McGovern
Wilson)

2: New Zealand

1 BRE1 Breaksea Sound 1,Discovery Cove,(BSS/1)

2 BRE2 Breaksea Sound 2, Chatham Point 3, BSS/2

3 CASC Cascade Cove, Dusky Sound (CC/1)
4 CHAL Chalky Is, Chalky Inlet, Southport CH/1
5 COOP Coopers Island, Dusky Sound, (CI/1)
6 DUND Davidson Undefended Site, Motutapu Is
7 FOXR Fox River, Te Onumata, Potikohua River
8 FOXT Foxton
9 GARD Garden Island, Chalky Inlet, Southport
10 GLEN The Glen, Tasman Bay
11 HARWHarataonga Bay W Midden, Gt Barrier Is
12 HOTW Hot Water Beach, Coromandel Peninsula
13 HUDS Hudson's Site, Goose Bay, Kaikoura
14 IKAE Te Ika a Maru, Eastern Flat
15 IKAF Te Ika a Maru, Flat at Base of Pa
16 KAHN Kahiti North, Hansons Bay, Chatham Is
17 KAHS Kahiti South, Hansons Bay, Chatham Is
18 KIRI Te Kiri Kiri, Ruapuke Island, (KK/1)

19	LEEI	Lee Island Site, on Ruapuke Island, LI/1
20	LOBE	Long Beach, Dunedin
21	LONG	Long Island, Dusky Sound, (LI/1)
22	LUND	Leahy Undefended Site, Motutapu Island
23	MAKB	Makara Beach Midden
24	MAKT	Makara Terrace Midden
25	MILF	Milford
26	NGAI	Te Ngaio, Petre Bay, Chatham Island
27	OHIN	Ohinemamao, Petre Bay, Chatham Island
28	OMIH	Omihi, Kaikoura
29	PAPA	Papatowai, Catlins
30	PARA	Parangiaio, Ruapuke Island, (PP/1)
31	PARE	Paremata
32	PCR1	Port Craig Cave, Foveaux Strait, (PC/1)
33	PCR2	Port Craig Dry Rock Shelter 1, Foveaux
34	PCR3	Port Craig Dry Rock Shelter 2, Foveaux
35	PCR4	Port Craig Midden, Foveaux Strait, PC/4
36	PEKP	Peketa Pa, Kaikoura
37	PJAC	Port Jackson, Coromandel
38	POKI	Pokiakio, Petre Bay, Chatham Islands
39	ROSS	Ross Rocks, Otago
40	SAN1	Sandhill Point 1, Foveaux Strait, SHP/1
41	SAN2	Sandhill Point 2, Foveaux Strait, SHP/2
42	SAN3	Sandhill Point 3, Foveaux Strait, SHP/3
43	SAN4	Sandhill Point 4, Foveaux Strait, SHP/4
44	SOU1	Southport 1, Fiordland, (SP/1)
45	SOU4	Southport 4, Cave Site, Fiordland, SP/4
46	SOU5	Southport 5, Cave Site, Fiordland, SP/5
47	SOU6	Southport 6, Fiordland, (SP/6)
48	SOU7	Southport 7, Fiordland, (SP/7)
49	SOU8	Southport 8, Fiordland, (SP/8)
50	SOU9	Southport 9, Cave Site, Fiordland, SP/9
51	STAT	Station Bay Pa, Motutapu Island
52	SUND	Sunde Site, Motutapu Island
53	TAIA	Taiaroa Head, Otago Peninsula
54	TAKA	Takahanga Post Office Site Kaikoura
55	TITC	Titirangi Cattleyards, Marlborough
56	TITG	Goose Bay Midden, Titirangi,
Marlborough		
57	TITP	Titirangi Pa, Marlborough Sounds
58	TITS	Titirangi Sandhills, Marlborough Sounds
59	TIWA	Tiwai Point, Bluff Harbour
60	TUMB	Tumbledown Bay, Banks Peninsula
61	WAKA	Wakapatu, Western Southland
62	MANA	Parewanui Midden, Bulls, Manawatu
63	SHAG	Shag River Mouth
64	KOKO	Kokohuia, Hokianga
65	MATA	Midden 8, Matakana Island
66	WASH	Washpool Site, Palliser Bay
67	MAK3	Makotukutuku M3 Fort Site, Palliser Bay
68	MAK1	Makotukutuku M1 Camp Site, Palliser
Bay		
69	BLR2	Black Rocks BR2 Pond Midden, Palliser
70	BLR3	Black Rocks BR3 Black Midden, Palliser
71	BLR4	Black Rocks BR4 Crescent Midden
Palliser		
72	BLR5	Black Rocks Fan
73	MAN1	Mana Island South Midden R26/141A
74	MAN2	Mana Island North Settlement R26/141

80 OTOK Otokia Mouth, Brighton Beach, Otago
81 POUN Pounawea, Otago
82 PURA Purakanui Inlet, Otago
83 RIVE Riverton, Southland
84 ROTO Rotokura, Tasman Bay
85 WAIA Waianakarua Mouth, North Otago
86 HARP Harataonga Bay Pa, Great Barrier Island
87 SLIP Slipper Island, Near Tairua Harbour
88 TAIR Tairua, Coromandel
89 WHANWhangamata Wharf, Coromandel
90 CROS Cross Creek Site
91 WAIH Waihora, Chatham Islands
92 CHAA CHA, Chatham Islands
93 CHBB CHB, Chatham Islands
94 CHCC CHC, Chatham Islands
95 PANA Panau, Canterbury Peninsular
96 TWIL Twilight Beach, Northland
97 AUPO Aupori Dune Middens 90 Mile Beach
98 HOUH Houhora
99 WAIP Waipoua
100 NHBWNorthland Harbour Board Site, Whangaraei
101 SUN2 Sunde Site Oyster lens
102 SUN3 Sunde Site soft shore midden
103 WES1 Westfield N42/941
104 HAML Hamlins Hill N42/137
105 HAHE Hahei N44/215
106 HARS N44/97
107 ORUR Oruarangi N49/28
108 RAUP Raupa N53/37, T13/13
109 AOTE Aotea N64/25
110 KOHI Kohika N68/104
111 AWARAwaroa N26/18
112 BARB N26/214
113 BARK Bark Bay
114 TAUP Taupo Point
115 APPL Appleby
116 HAUL Haulashore Island
117 BRUC Bruce Bay
118 TIRO Tiromoana N135/1
119 PAR2 Pararaki Wall, Pararaki North N168-9/41
120 PLE1 Pleasant River (Anthropology) S155/8
121 PLE2 Pleasant River (Smith)
122 TUMA Tumai, Pleasant River Mouth South
123 MAPO Mapoutahi S164/13
124 PUKE Pukekura Pa, Tairoa Head
125 PAP2 Papatowai S184/5
126 WES2 West Point WP/1, Ruapuke Island

APPENDIX C

PRE-WAR JAPANESE FISHERIES IN MICRONESIA FOCUSING ON BONITO AND TUNA FISHING IN THE NORTHERN MARIANA ISLANDS

By

Wakako Higuchi

This project was funded (or partly funded) by Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research (JIMAR) and the National Oceanic and Atmospheric Administration (NOAA). The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subdivisions.

Pre-war Japanese Fisheries in Micronesia
 -Focusing on Bonito and Tuna Fishing in the Northern Mariana Islands-

Wakako Higuchi
Research Associate Micronesian Area Research Center
University of Guam
January 15, 2006

For
Micronesian Archaeological Research Services
A Guam Non-Profit Corporation P.O. Box 22303, GMF, Guam 96921

Pre-war Japanese Fisheries in Micronesia
 -Focusing on Bonito and Tuna Fishing in the Northern Mariana Islands-

Introduction

As a participant in World War I, Japan took control of the German colonies in Micronesia in 1914, and called them the South Sea Islands - comprising Saipan, Palau, Yap, Chuuk (formerly Truk), Pohnpei (formerly Ponape) and the Marshalls. The Japanese Navy administered the islands until 1922. Later, the civilian-run South Seas Bureau governed the islands as a League of Nations mandate. By the mid-1930s, the navy again became politically and militarily involved in the administration of the islands.

As seen in Graph 1 below, the fishing industry in Micronesia increased rapidly throughout the 1930s, becoming one of the major economic achievements in the islands during Japanese rule, along with the sugarcane, copra, and phosphate industries. The main marine product was bonito caught by pole-and-line.

This report will review records of the bonito and tuna fisheries in the South Sea Islands during the South Seas Bureau administration. The review is divided into three periods: 1922-1931, 1931-1941, 1941-1942. The period 1922-1931 can be termed the Experimentation Period. The next period, 1931-1941, saw the rise of fishery industries in the South Sea Islands. The last period covers fisheries during the early Pacific War, 1941-1942. There are no South Seas Bureau fishery statistics available between 1943 and 1944. Fishing efforts in the Saipan district will be examined separately, since the other areas within the South Sea Islands are not pertinent to the present project.

Japanese references compiled prior to 1951 do not specify each kind of bonito and tuna caught. They simply identify fish as either bonito (katsuwo) or tuna (maguro). According to Okamoto Hiroaki, National Research Institute of Far Seas Fisheries, Japan, when "bonito" pole-and-line fishery is discussed in Japanese references, the species taken included mainly Katsuwonus pelamis (skipjack, or katsuwo), also Auxis thazard (hirasôda) and Auxis rochei (frigate mackerel, or marusôda); and probably Euthynuus affins (suma) and Sarda orientalis (bonito, or hagatsuwo). Japanese fishing grounds until then were limited to the western and central Pacific north of the equator. ${ }^{1}$

In the same way, the term, "tuna" includes the following species: Thunnus thynnus (Pacific bluefin tuna), T. alalunga (albacore), T. obesus (bigeye tuna), and T. albacares (yellowfin tuna).

[^5]

Source: Nan'yôchô, Daisankai, Nan'yôchô tôkei nenkan (Tokyo: Nan'yôchô, 1935), p. 124-126; and Nan’yôchô, Nan'yô Guntô yôran, 1929-1942.

Fisheries during the Experimentation Period (1922-1931)

With two fishery regulations - the Regulations for the Fishery Industry in the South Sea Islands (1916), and the Regulations for Encouragement of Fishery Industry in the South Sea Islands (1922), the South Seas Bureau's policy was always to promote and support fisheries in the islands. In 1925, the South Seas Bureau launched the research ship Hakuômaru (10 tons), and began ocean research on bonito pole-and-line fisheries. Catches were poor in spite of the observation of large schools of fish. Though attempts at encouraging fisheries were made, they failed for a variety of reasons. The most serious problems throughout the pre-war years were difficulties in handling and marketing the fish - preservation, lack of local markets in the islands, a small Japanese population in the islands, and inadequate transportation to Japan.

Bonito Fishing in the South Sea Islands: It appears that the bonito fishery in the South Sea Islands first began in the 1920s. An individual by the name of Uehara Kamezô hired five Okinawan fishermen and an Okinawan-style large canoe on Saipan. In late 1925, he took akadoro (the general term for Apogonidae, Amia, Apogon, and Chilodipterus), small baitfish on the reef at Palau. They caught bonito - 50 to 100 bonito per day - two to three miles distant from the eastern channel and off the lighthouse at Palau. ${ }^{2}$

[^6]Similarly, Taiyô Suisan Kabushiki Kaisha (Taiyô Marine Products Company) on Saipan hired Okinawan fishermen and caught bonito, also in the Palau area. However, because of lack of bait and the strong trade winds, the catch was poor. Taiyô Suisan also took bonito using the South Seas Bureau's Hakuômaru for two years, but the poor catches resulted in the dissolution of the company.

In Chuuk, Okinawan fisherman, Tamashiro Eishô, began a bonito fishery around 1918. Fishermen from Shizuoka also engaged in fishing. While other fishermen from Shizuoka failed, Tamashiro succeeded. The reason for Tamashiro's success was that his Okinawan employees were skillful at catching the bait needed for a good haul in the South Seas.

Two things were required for successful fishing: quantity and quality of bait, and skilled Okinawan fishermen. ${ }^{3}$ Bonito fishing was totally dependent on the right kind of bait. In Palau, there was abundant baitfish - kibinago (Stolephorus delicatulus [Bennett]), and especially nan'yo katakuchi iwashi (Engraulis heterolobus [Rueppel]). Although the latter was the best bait for bonito pole-and-line fishing, these small fish could not be caught in waters around Saipan. Instead, akamura (Caessio chrysozoma [Kuhl \& Hass], maaji (Trachinrus japonicus [Temm. \& Schl.]), meaji (Trachurops crumenophthalma [Bloch.]), shimaaji (Caranx malabalicus [Cuv. \& Val.]), and another kind of horse mackerel (C. leptolepis [Cuv. \& Val].) were used on Saipan. ${ }^{4}$ For catching bait, Okinawan divers were necessary. In the 1920s, bonito fisheries were gradually centered around the waters of Palau, and Saipan. ${ }^{5}$ Okinawan fishermen, mainly from Itoman, Okinawa, were recruited to work in the South Sea Islands. Out of a total of 1,336 workers engaged in the fisheries industry in 1932, 405 worked out of the Saipan district (30\%), 425 in the Palau district (32\%), 234 in the Chuuk district (18\%), 178 in the Pohnpei district (13\%), 83 in the Yap district (6.2\%), and 11 in the Juluit district (0.8\%). ${ }^{6}$

Table 1 below shows the number of fishing permits issued by the South Seas Bureau. The permits for bonito fishing slowly increased in the Saipan district from the 1920s on, but the number of permits was still fewer than 8 by 1931.

Table 2 below shows that there were 23 permitted vessels in the Saipan district, with 167 fishermen as of 1930. According to Table 3, the total value of the Saipan fish catch increased from 19,627 yen in 1929 to 70,296 yen in 1930, owing to the employment of four vessels of 20 tons and more.

Also, as seen in Table 3, the bonito catch in Saipan district increased from 24,690 kg in 1929 to $258,004 \mathrm{~kg}$ in 1930, an increase of more than 10 times. Because of the

[^7]increase of motorized vessels on Saipan, bonito catches rapidly increased to 564,258 kg by 1931, 23 times more than in 1929. These increases were catches by vessels from Yaizu, Japan, which organized as Nan’yô Suisan Kigyô Kumiai (South Seas Fishery Companies’ Association, later Nankô Suisan) in 1931. In 1925, bonito catches made up 14% of the total fish catch in the South Sea Islands (33\% in the Saipan district). This increased to 55% in 1929, 78\% in 1930 and 73% in 1931 ($53 \%, 87 \%$, and 90% in the Saipan district respectively). As a result, bonito fishing became a major industry on Saipan, as well as in other parts of the South Sea Islands. And owing to the increase of bonito fish catches, dried bonito production also increased accordingly, as seen in Table 4.

Tuna Fishing: The South Seas Bureau Marine Laboratory reported in 1938 that the density of tuna schools in the South Sea Islands was the same as for bonito. ${ }^{7}$ However, processing of tuna after catch was more difficult than bonito because tuna needed icing to keep it fresh. Further development of the tuna fisheries had to wait for construction of necessary refrigeration, ice storage, and processing facilities. As mentioned above, island conditions - such as distance from Japan's markets, and limited local consumption in the South Sea Islands - were also a detriment to growth of the tuna fishery. There were only three longliners for tuna fisheries, and these were only at Palau as late as 1935. Table 3 shows increasing tuna catches starting in 1930. Nan'yô Suisan's pole-and-line vessels probably took these tuna.

During the Experimentation Period, Japanese bonito fisheries focused on the seas of Palau, Chuuk, and Saipan districts. Fishing grounds located near the outer islands and far seas had been untouched. The South Seas Bureau wrote in 1935 that there was plenty of scope for the fishing industry in the South Sea Islands, if fishing methods were improved and fishing grounds expanded. However, it also added, "excluding of areas of poor condition such as Saipan." ${ }^{8}$ For increasing the catch of fish in the islands and because Saipan appeared more developed with many Okinawan immigrants, bonito fishery in the Saipan district water was necessary and important. However, in the long term Saipan was not expected to yield as much fish as other islands along the equator would likely do.

[^8]Table 1 Fishing Permits Issued by the South Seas Bureau (S: Saipan District = Saipan, Tinian, and Rota)

	Total	Fixed Net	Raising	Hawksbill	Tectus maximus, Pearl Oyster	Bonito	Other Fish	Trepang	Coral	Whaling
1922	$\begin{aligned} & \hline 38 \\ & \text { S: } 9 \end{aligned}$	---	2	1	3	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \end{aligned}$	$\begin{aligned} & \hline 21 \\ & \mathrm{~S}: 7 \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \end{aligned}$	---
1923	$\begin{aligned} & \hline 43 \\ & \text { S: } \mathbf{1 0} \end{aligned}$	1	2	1	3	$\begin{aligned} & \hline 2 \\ & \mathrm{~S}: \mathbf{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 23 \\ & \mathrm{~S}: 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 \\ & \text { S: } 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: \mathbf{1} \\ & \hline \end{aligned}$	---
1924	$\begin{aligned} & \hline 55 \\ & \mathrm{~S}: \mathbf{1 5} \\ & \hline \end{aligned}$	1	2	1	3	$\begin{aligned} & \hline 3 \\ & \mathrm{~S}: 2 \end{aligned}$	$\begin{aligned} & 31 \\ & \text { S: } 10 \end{aligned}$	$\begin{aligned} & \hline 13 \\ & \text { S: } 2 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \end{aligned}$	---
1925	$\begin{aligned} & 90 \\ & \text { S: } 31 \end{aligned}$	2	2	5	6	$\begin{aligned} & \hline 4 \\ & \mathrm{~S}: 3 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { S: } 24 \end{aligned}$	$\begin{aligned} & \hline 19 \\ & \text { S: } 2 \end{aligned}$	$\begin{aligned} & 1 \\ & \text { S: } 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~S}: 1 \end{aligned}$
1926	$\begin{aligned} & 86 \\ & \text { S: } \mathbf{1 8} \\ & \hline \end{aligned}$	---	2	10	8	$\begin{aligned} & 11 \\ & \mathrm{~S}: 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 35 \\ & \text { S: } 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18 \\ & \mathrm{~S}: \mathbf{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \text { S: } 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: \mathbf{1} \\ & \hline \end{aligned}$
1927	$\begin{aligned} & 94 \\ & \text { S: } 21 \end{aligned}$	1	2	9	7	$\begin{aligned} & 12 \\ & \mathrm{~S}: 6 \end{aligned}$	$\begin{aligned} & 44 \\ & \text { S: } 11 \end{aligned}$	$\begin{aligned} & 17 \\ & \text { S: } 2 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \end{aligned}$
1928	$\begin{aligned} & 94 \\ & \text { S: } 21 \\ & \hline \end{aligned}$	2	2	8	7	$\begin{aligned} & 12 \\ & \text { S: } 5 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & \text { S: } \mathbf{1 4} \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { S: } 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \end{aligned}$
1929	$\begin{aligned} & 94 \\ & \text { S: } 23 \\ & \hline \end{aligned}$	2	2	6	6	$\begin{aligned} & 17 \\ & \mathrm{~S}: \mathbf{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & \text { S: } 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { S: } 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~S}: 1 \\ & \hline \end{aligned}$
1930	$\begin{aligned} & 87 \\ & \text { S: } 16 \end{aligned}$	2	2	5	4	$\begin{aligned} & \hline 24 \\ & \text { S: } 8 \end{aligned}$	$\begin{aligned} & \text { 37 } \\ & \text { S: } 7 \end{aligned}$	$\begin{aligned} & 13 \\ & \mathrm{~S}: \mathbf{1} \end{aligned}$	S: ---	---
1931	$\begin{aligned} & \hline 74 \\ & \text { S: } 9 \\ & \hline \end{aligned}$	1	2	4	1	$\begin{aligned} & \hline 36 \\ & \mathrm{~S}: 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{~S}: 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~S}: \mathbf{1} \\ & \hline \end{aligned}$	S: ---	S: ---
1932	$\begin{aligned} & \hline 103 \\ & \text { S: } 22 \\ & \hline \end{aligned}$	1	2	3	4	$\begin{aligned} & \hline 37 \\ & \text { S: } \mathbf{1 0} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47 \\ & \mathrm{~S}: \mathbf{1 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~S}: 1 \\ & \hline \end{aligned}$	S: ---	S: ---
1933	$\begin{aligned} & 124 \\ & \text { S: } 47 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & \text { S: } 16 \end{aligned}$	$\begin{aligned} & 56 \\ & \text { S: } \mathbf{3 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \text { S: } 1 \\ & \hline \end{aligned}$	S: ---	S: ---

Source: Statistics 1922-1932: Nan’yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan’yôchô, 1934), pp. 348; and Statistics 1933: Nan'yôchô, Daisankai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1935), pp. 126

Table 2 Fishing Vessels and Fish Catch in the South Sea Islands (S: Saipan District = Saipan, Tinian, and Rota)

Total Fishing Vessels		Fishing Vessels									Crew	Total Fish Catch (yen)*
		Non-Motorized Vessels				Motorized Vessels						
		Total	$\begin{aligned} & <5 \\ & \text { tons } \end{aligned}$	$\begin{aligned} & 5-20 \\ & \text { tons } \end{aligned}$	$\begin{aligned} & >20 \\ & \text { tons } \end{aligned}$	Total	Steam Engine		Motor			
							$\begin{aligned} & <20 \\ & \text { tons } \\ & \hline \end{aligned}$	$\begin{aligned} & >20 \\ & \text { tons } \end{aligned}$	$\begin{aligned} & <20 \\ & \text { tons } \\ & \hline \end{aligned}$	$\begin{aligned} & >20 \\ & \text { tons } \end{aligned}$		
1928	$\begin{aligned} & \hline 1,044 \\ & \text { S: } 35 \end{aligned}$	$\begin{aligned} & 1,031 \\ & \text { S: } 32 \end{aligned}$	$\begin{aligned} & 1,031 \\ & \text { S: } 32 \end{aligned}$	S: ---	$\overline{\text { S: }----~}$	$\begin{aligned} & \hline 13 \\ & \mathrm{~S}: 3 \end{aligned}$	$\overline{\text { S: }----~}$	S: ---	$\begin{aligned} & \hline 13 \\ & \mathrm{~S}: 3 \end{aligned}$	S: ---	$\begin{aligned} & \hline 1,781 \\ & \mathbf{S : ~} \mathbf{1 0 2} \end{aligned}$	$\begin{aligned} & \hline 247,933 \\ & \text { S: 24,490 } \end{aligned}$
1929	$\begin{aligned} & \hline 846 \\ & \text { S: } 34 \end{aligned}$	$\begin{aligned} & \hline 825 \\ & \text { S: } 32 \end{aligned}$	$\begin{aligned} & \hline 825 \\ & \text { S: } 32 \end{aligned}$	S: ---	S: ---	$\begin{aligned} & \hline 21 \\ & \mathrm{~S}: 2 \end{aligned}$	S: ---	S: ---	$\begin{aligned} & 21 \\ & \mathrm{~S}: 2 \end{aligned}$	S: ---	$\begin{aligned} & 1,665 \\ & \text { S: } 105 \end{aligned}$	$\begin{aligned} & \hline 305,849 \\ & \text { S: } \mathbf{1 9 , 6 2 7} \end{aligned}$
1930	$\begin{aligned} & 1,007 \\ & \text { S: } 23 \end{aligned}$	$\begin{aligned} & \hline 979 \\ & \text { S: } 19 \end{aligned}$	$\begin{aligned} & 975 \\ & \text { S: } 15 \end{aligned}$	S: ---	$\begin{aligned} & 4 \\ & \mathrm{~S}: 4 \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{~S}: 4 \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \end{aligned}$	S: ---	$\begin{aligned} & 23 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 5 \\ & \text { S: } 4 \end{aligned}$	$\begin{aligned} & 1,861 \\ & \text { S: } 167 \end{aligned}$	$\begin{aligned} & \text { 488,487 } \\ & \text { S: 70,296 } \end{aligned}$
1931	$\begin{aligned} & \text { 1,041 } \\ & \text { S: } 40 \end{aligned}$	$\begin{aligned} & \hline 980 \\ & \text { S: } 22 \end{aligned}$	$\begin{aligned} & \hline 980 \\ & \text { S: } 22 \end{aligned}$	S: ---	S: ---	$\begin{aligned} & \hline 61 \\ & \text { S: } 18 \end{aligned}$	S: ---	$\begin{aligned} & \hline--- \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline 57 \\ & \text { S: } \mathbf{1 8} \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline \text { 2,599 } \\ & \text { S: } \mathbf{3 2 4} \end{aligned}$	$\begin{aligned} & \hline 850,490 \\ & \text { S: } \mathbf{1 4 1 , 0 1 3} \end{aligned}$
1932	$\begin{aligned} & \text { 1,116 } \\ & \text { S: } 92 \end{aligned}$	$\begin{aligned} & \text { 1,053 } \\ & \text { S: } 75 \end{aligned}$	$\begin{aligned} & \text { 1,053 } \\ & \text { S: } 75 \end{aligned}$	$\begin{aligned} & \text {--- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \text {--- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 63 \\ & \text { S: } 17 \end{aligned}$	$\begin{aligned} & \text {--- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 62 \\ & \text { S: } \mathbf{1 7} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \text { 2,933 } \\ & \text { S: } 498 \end{aligned}$	$\begin{aligned} & 1,252,121 \\ & \text { S: } \mathbf{3 7 4 , 5 6 4} \end{aligned}$
1933	$\begin{aligned} & \text { 376 } \\ & \text { S: } 90 \end{aligned}$	$\begin{aligned} & \hline 314 \\ & \text { S: } 73 \end{aligned}$	$\begin{aligned} & \hline 314 \\ & \text { S: } 73 \end{aligned}$	S: ---	---	$\begin{aligned} & \hline 62 \\ & \text { S: } \mathbf{1 7} \\ & \hline \end{aligned}$	S--	---	$\begin{aligned} & \hline 62 \\ & \text { S: } \mathbf{1 7} \\ & \hline \end{aligned}$	---	$\begin{aligned} & \hline 1,882 \\ & \mathrm{~S}: 492 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,790,322 \\ & \text { S: 406,964 } \\ & \hline \end{aligned}$

[^9]Table 3 Fish Catch in the South Sea Islands: Quantity and Value (S: Saipan District = Saipan, Tinian, and Rota)

	Grand Total	Total Fish Catch	Bonito	Tuna	Mackerel
1922	113,596 yen S: 4,961 yen	$\begin{aligned} & \hline 360,653 \mathrm{~kg} \\ & 90,062 \text { yen } \\ & \text { S: } \mathbf{8 , 7 4 1} \mathbf{~ k g} \\ & \text { S: } \mathbf{4 , 9 6 1} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,713 \mathrm{~kg} \\ & 6,770 \text { yen } \\ & \mathrm{S}: \mathbf{2 , 3 6 3} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 , 8 9 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,075 \mathrm{~kg} \\ & 3,730 \text { yen } \\ & \text { S: } \mathbf{1 , 3 1 2} \mathbf{~ k g} \\ & \text { S: } \mathbf{8 7 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 13,399 \mathrm{~kg} \\ & 3,573 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1923	$\begin{aligned} & \text { 175,609 yen } \\ & \text { S: 10,202 yen } \end{aligned}$	$\begin{aligned} & \hline 304,740 \mathrm{~kg} \\ & 78,525 \text { yen } \\ & \text { S: } \mathbf{1 9 , 6 8 0} \mathbf{~ k g} \\ & \text { S: 9,677 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 7,305 \mathrm{~kg} \\ & 5,068 \text { yen } \\ & \text { S: } \mathbf{2 , 8 1 3} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 2 5 0} \mathbf{~ y e n} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,652 \mathrm{~kg} \\ & 3,673 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 2 5 2} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{8 8 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 7,110 \mathrm{~kg} \\ & 4,121 \text { yen } \\ & \text { S: } \mathbf{1 9} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 4} \text { yen } \\ & \hline \end{aligned}$
1924	115,178 yen S: 15,192 yen	$\begin{aligned} & \hline 252,593 \mathrm{~kg} \\ & 82,173 \text { yen } \\ & \text { S: } \mathbf{1 9 , 2 6 1} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 0 , 4 4 7} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17,741 \mathrm{~kg} \\ & 11,580 \text { yen } \\ & \text { S: } \mathbf{9 , 0 9 7} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 , 0 6 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11,951 \mathrm{~kg} \\ & 5,971 \text { yen } \\ & \text { S: } \mathbf{1 , 5 3 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 0 2 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 11.944 \mathrm{~kg} \\ & 9,545 \mathrm{yen} \\ & \text { S: } \mathbf{4 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{3 0} \text { yen } \\ & \hline \end{aligned}$
1925	$\begin{aligned} & \text { 204,452 yen } \\ & \text { S: 18,740 yen } \end{aligned}$	$\begin{aligned} & 251,445 \mathrm{~kg} \\ & 93,453 \text { yen } \\ & \text { S: } \mathbf{4 3 , 0 6 1} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 6 , 1 8 1} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36,319 \mathrm{~kg} \\ & 17,520 \text { yen } \\ & \text { S: } \mathbf{1 4 , 3 0 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 , 3 4 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12,229 \mathrm{~kg} \\ & 4,557 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 4 0 3} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{7 4 9} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline, 725 \mathrm{~kg} \\ & 5,760 \text { yen } \\ & \text { S: } 787 \mathbf{~ k g} \\ & \text { S: } 210 \text { yen } \\ & \hline \end{aligned}$
1926	254,372 yen S: 27,817 yen	$\begin{aligned} & \hline 399,349 \mathrm{~kg} \\ & 142,884 \text { yen } \\ & \text { S: } \mathbf{7 5 , 8 1 3} \mathrm{kg} \\ & \text { S: } \mathbf{2 7 , 0 2 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 92,284 \mathrm{~kg} \\ & 42,282 \text { yen } \\ & \text { S: } \mathbf{4 4 , 8 4 2} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 7 , 9 3 7} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 55,534 \mathrm{~kg} \\ & 22,423 \text { yen } \\ & \mathrm{S}: \mathbf{2 , 3 1 4} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 , 2 3 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31,043 \mathrm{~kg} \\ & 15,813 \text { yen } \\ & \text { S: } \mathbf{6 9 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{3 6 9} \text { yen } \\ & \hline \end{aligned}$
1927	$\begin{aligned} & \text { 232,725 yen } \\ & \text { S: } \mathbf{1 9 , 4 1 7} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 380,467 \mathrm{~kg} \\ & 136,378 \text { yen } \\ & \text { S: 51,416 } \mathbf{~ k g} \\ & \text { S: } \mathbf{1 8 , 2 6 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 52,954 \mathrm{~kg} \\ & 23,781 \text { yen } \\ & \mathrm{S}: \mathbf{2 8 , 1 1 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 0 , 7 7 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 54,266 \mathrm{~kg} \\ & 24,327 \text { yen } \\ & \text { S: } \mathbf{2 , 9 0 6} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 4 7 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 4,586 \mathrm{~kg} \\ & 1,834 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$
1928	$\begin{aligned} & \text { 277,933 yen } \\ & \text { S: 24,490 yen } \end{aligned}$	$\begin{aligned} & \hline 583,995 \mathrm{~kg} \\ & 166,045 \text { yen } \\ & \text { S: } 57,855 \mathbf{~ k g} \\ & \text { S: } \mathbf{2 1 , 0 2 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 163,714 \mathrm{~kg} \\ & 48,644 \text { yen } \\ & \text { S: 26,494 } \mathbf{k g} \\ & \text { S: } \mathbf{1 0 , 2 1 9} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 164,182 \mathrm{~kg} \\ & 38,629 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 2 6 0} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{6 1 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,380 \mathrm{~kg} \\ & 1,805 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1929	$\begin{aligned} & \text { 342,659 yen } \\ & \text { S: 19,627 yen } \end{aligned}$	$\begin{aligned} & 850,129 \mathrm{~kg} \\ & 215,432 \text { yen } \\ & \text { S: } \mathbf{4 6 , 4 1 6} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 6 , 8 3 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 469,511 \mathrm{~kg} \\ & 126,937 \text { yen } \\ & \text { S: } \mathbf{2 4 , 6 9 0} \mathbf{~ k g} \\ & \text { S: 9,876 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 172,001 \mathrm{~kg} \\ & 31,825 \text { yen } \\ & \text { S: } 562 \mathbf{k g} \\ & \text { S: } \mathbf{3 0 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 9,784 \mathrm{~kg} \\ & 3,910 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$
1930	$\begin{aligned} & \text { 510,767 yen } \\ & \text { S: 70,296 yen } \end{aligned}$	$\begin{aligned} & 1,719,870 \mathrm{~kg} \\ & 413,129 \text { yen } \\ & \text { S: } \mathbf{2 9 7 , 9 3 8} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 8 , 4 3 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,335,720 \mathrm{~kg} \\ & 327,861 \text { yen } \\ & \text { S: } \mathbf{2 5 8 , 0 0 4} \mathbf{~ k g} \\ & \mathbf{S}: \mathbf{5 6 , 1 4 2} \text { yen } \end{aligned}$	$\begin{aligned} & 111,997 \mathrm{~kg} \\ & 13,947 \text { yen } \\ & \text { S: } \mathbf{4 , 5 3 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 4 9 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,993 \mathrm{~kg} \\ & 714 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1931	871,490 yen $S: 141,013$ yen	$\begin{aligned} & \hline 3,873,968 \mathrm{~kg} \\ & 787,888 \text { yen } \\ & \mathrm{S}: \mathbf{6 2 8 , 2 5 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 3 9 , 4 4 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,816,808 \mathrm{~kg} \\ & 622,983 \text { yen } \\ & \text { S: 564,258 } \mathbf{~ k g} \\ & \text { S: } \mathbf{1 2 2 , 0 2 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 211,910 \mathrm{~kg} \\ & 29,898 \text { yen } \\ & \text { S: } \mathbf{1 6 , 7 3 4} \mathbf{~ k g} \\ & \text { S: 5,622 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 888 \mathrm{~kg} \\ & 189 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$
1932	$1,266,866$ yen S: 374,564 yen	$\begin{aligned} & \hline 5,797,617 \mathrm{~kg} \\ & 1,181,693 \text { yen } \\ & \text { S: } \mathbf{1 , 5 7 7 , 3 8 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{3 7 2 , 0 2 1} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,861,263 \mathrm{~kg} \\ & 944,261 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 3 0 9 , 7 2 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{3 1 7 , 9 1 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 361,445 \mathrm{~kg} \\ & 50,801 \text { yen } \\ & \text { S: } \mathbf{4 8 , 2 4 4} \mathbf{k g} \\ & \mathrm{S}: \mathbf{1 5 , 4 3 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 341 \mathrm{~kg} \\ & 137 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$
1933	$\begin{aligned} & \text { 1,790,322 yen } \\ & \text { S: 406,964 yen } \end{aligned}$	$\begin{aligned} & 7,725,086 \mathrm{~kg} \\ & 1,708,886 \text { yen } \\ & \text { S: } \mathbf{1 , 9 0 2 , 7 0 7} \mathbf{~ k g} \\ & \text { S: 405,715 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 6,889,401 \mathrm{~kg} \\ & 1,512,631 \text { yen } \\ & \text { S: } \mathbf{1 , 7 6 2 , 3 0 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{3 7 0 , 1 8 4} \text { yen } \end{aligned}$	$\begin{aligned} & 374,796 \mathrm{~kg} \\ & 59,811 \text { yen } \\ & \text { S: } \mathbf{9 , 5 8 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 9 0 8} \text { yen } \end{aligned}$	$\begin{aligned} & \text { 4,154 kg } \\ & 788 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$

Table 3 Fish Catch in the South Sea Islands: Quantity and Value (S: Saipan District = Saipan, Tinian, and Rota) (Continued)

	Horse Mackerel	Spanish Mackerel	Grey Mullet	Shark	Other Fish	Shellfish Others
1922	$\begin{aligned} & 31,875 \mathrm{~kg} \\ & 11,018 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 2 7 5} \mathbf{~ k g} \\ & \mathbf{S : ~} \mathbf{6 8 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 10,500 \mathrm{~kg} \\ & 4,200 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	--- --- S: --- S: ---	$\begin{aligned} & \hline 289,091 \mathrm{~kg} \\ & 60,771 \text { yen } \\ & \text { S: } \mathbf{3 , 7 9 1} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 5 0 6} \text { yen } \\ & \hline \end{aligned}$	23,534 yen S: ---
1923	$\begin{aligned} & 19,695 \mathrm{~kg} \\ & 8,364 \text { yen } \\ & \text { S: } \mathbf{1 , 8 5 6} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{9 9 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \mathrm{~kg} \\ & 34 \text { yen } \\ & \mathrm{S}: \mathbf{4 9} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{3 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,473 \mathrm{~kg} \\ & 2,627 \text { yen } \\ & \text { S: } \mathbf{2 8 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 5 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,471 \mathrm{~kg} \\ & 566 \text { yen } \\ & \mathrm{S}: \mathbf{9 7} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{2 6} \text { yen } \end{aligned}$	$\begin{aligned} & 254,985 \mathrm{~kg} \\ & 54,072 \text { yen } \\ & \text { S: } \mathbf{1 3 , 3 0 9} \mathbf{~ k g} \\ & \text { S: 5,323 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 97,084 \text { yen } \\ & \text { S: } 525 \text { yen } \end{aligned}$
1924	$\begin{aligned} & 22,087 \mathrm{~kg} \\ & 13,523 \text { yen } \\ & \text { S: } 570 \mathbf{~ k g} \\ & \text { S: } \mathbf{3 0 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 668 \mathrm{~kg} \\ & 363 \text { yen } \\ & \mathrm{S}: \mathbf{3 4 9} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{2 3 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,613 \mathrm{~kg} \\ & 1,632 \text { yen } \\ & \mathrm{S}: \mathbf{1 9} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,356 \mathrm{~kg} \\ & 1,969 \text { yen } \\ & \text { S: } \mathbf{1 , 5 1 9} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{3 2 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 177,233 \mathrm{~kg} \\ & 37,590 \text { yen } \\ & \text { S: } \mathbf{6 , 1 2 8} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 4 5 2} \text { yen } \\ & \hline \end{aligned}$	33,005 yen S: 4,745 yen
1925	$\begin{aligned} & \hline 27,697 \mathrm{~kg} \\ & 17,462 \text { yen } \\ & \text { S: } \mathbf{2 , 6 1 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 3 9 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,642 \mathrm{~kg} \\ & 563 \text { yen } \\ & \text { S: } \mathbf{3 8 6} \mathbf{~ k g} \\ & \text { S: } 228 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,606 \mathrm{~kg} \\ & 1,187 \text { yen } \\ & \text { S: } \mathbf{1 2 7} \mathbf{~ k g} \\ & \text { S: } \mathbf{4 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 5,269 \mathrm{~kg} \\ & 1,949 \text { yen } \\ & \text { S: } \mathbf{1 , 0 2 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 7 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 157,958 \mathrm{~kg} \\ & 44,455 \text { yen } \\ & \text { S: } \mathbf{2 1 , 9 1 9} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 , 9 3 5} \text { yen } \\ & \hline \end{aligned}$	110,999 yen S: 2,559 yen
1926	$\begin{aligned} & 24,637 \mathrm{~kg} \\ & 9,056 \text { yen } \\ & \text { S: } \mathbf{1 , 4 3 1} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 6 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,425 \mathrm{~kg} \\ & 406 \text { yen } \\ & \mathrm{S}: \mathbf{9 4} \mathbf{~ k g} \\ & \mathrm{S}: 51 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,225 \mathrm{~kg} \\ & 3,479 \text { yen } \\ & \text { S: } \mathbf{1 5 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{8 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,941 \mathrm{~kg} \\ & 653 \text { yen } \\ & \text { S: } \mathbf{2 , 3 4 7} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{3 1 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 181,260 \mathrm{~kg} \\ & 48,772 \text { yen } \\ & \text { S: } \mathbf{2 3 , 8 9 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 , 3 7 2} \text { yen } \\ & \hline \end{aligned}$	111,488 yen S: 795 yen
1927	$\begin{aligned} & \hline 61,601 \mathrm{~kg} \\ & 25,224 \text { yen } \\ & \text { S: } \mathbf{1 , 5 6 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 9 9} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 581 \mathrm{~kg} \\ & 155 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & 16,796 \mathrm{~kg} \\ & 6,410 \text { yen } \\ & \mathrm{S}: ~--- \\ & \mathrm{S}:--- \\ & \hline \end{aligned}$	$\begin{aligned} & 2,419 \mathrm{~kg} \\ & 447 \mathrm{yen} \\ & \mathrm{~S}: \mathbf{1 , 8 0 0} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{3 1 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 187,264 \mathrm{~kg} \\ & 54,200 \text { yen } \\ & \text { S: } \mathbf{1 7 , 0 4 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 , 0 9 6} \text { yen } \\ & \hline \end{aligned}$	96,347 yen S: 1,154 yen
1928	$\begin{aligned} & \hline 40,192 \mathrm{~kg} \\ & 16,223 \text { yen } \\ & \text { S: } \mathbf{3 , 0 3 7} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 2 0 1} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,449 \mathrm{~kg} \\ & 845 \text { yen } \\ & \text { S: } \mathbf{6 1 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 4 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 13,264 \mathrm{~kg} \\ & 4,990 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 12,900 \mathrm{~kg} \\ & 1,006 \text { yen } \\ & \text { S: } \mathbf{1 , 0 3 1} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 2 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 182,914 \mathrm{~kg} \\ & 53,903 \text { yen } \\ & \text { S: } \mathbf{2 5 , 4 1 8} \mathbf{~ k g} \\ & \text { S: } \mathbf{8 , 6 2 1} \text { yen } \\ & \hline \end{aligned}$	111,888 yen $S: 3,462$ yen
1929	$\begin{aligned} & 29,599 \mathrm{~kg} \\ & 11,396 \text { yen } \\ & \text { S: } \mathbf{2 , 1 0 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{8 4 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 926 \mathrm{~kg} \\ & 241 \text { yen } \\ & \mathrm{S}: \mathbf{1 0 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{5 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34,005 \mathrm{~kg} \\ & 5,409 \text { yen } \\ & \text { S: } \mathbf{3 3 7} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 0 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,186 \mathrm{~kg} \\ & 337 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 6 1 2} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{2 1 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 132,117 \mathrm{~kg} \\ & 35,377 \text { yen } \\ & \text { S: } \mathbf{1 7 , 0 1 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 , 4 4 3} \text { yen } \\ & \hline \end{aligned}$	127,227 yen S: 2,795 yen
1930	$\begin{aligned} & \hline 32,554 \mathrm{~kg} \\ & 7,616 \text { yen } \\ & \mathrm{S}: \mathbf{2 4 4} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{8 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,796 \mathrm{~kg} \\ & 243 \text { yen } \\ & \mathrm{S}: \mathbf{7 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{3 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48,176 \mathrm{~kg} \\ & 4,721 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5,445 \mathrm{~kg} \\ & 760 \text { yen } \\ & \text { S: 4,871 kg } \\ & \text { S: } \mathbf{6 3 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 181,189 \mathrm{~kg} \\ & 57,267 \text { yen } \\ & \text { S: } \mathbf{3 0 , 2 1 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{9 , 0 3 9} \text { yen } \\ & \hline \end{aligned}$	97,638 yen S: 1,866 yen
1931	$\begin{aligned} & 75,970 \mathrm{~kg} \\ & 16,983 \text { yen } \\ & \mathrm{S}: \mathbf{1 8 7} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{6 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 5,230 \mathrm{~kg} \\ & 652 \text { yen } \\ & \text { S: } 907 \mathbf{k g} \\ & \text { S: } \mathbf{3 5 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 269,610 kg } \\ & 16,052 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & 24,010 \mathrm{~kg} \\ & 1,357 \text { yen } \\ & \text { S: } \mathbf{3 , 8 5 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 0 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 469,542 \mathrm{~kg} \\ & 99,774 \text { yen } \\ & \text { S: } \mathbf{4 2 , 3 1 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 0 , 8 7 9} \text { yen } \\ & \hline \end{aligned}$	83,602 yen S: 1,565 yen
1932	$\begin{aligned} & 180,849 \mathrm{~kg} \\ & 50,762 \text { yen } \\ & \mathrm{S}: \mathbf{8 6 , 6 7 1} \mathbf{k g} \\ & \mathrm{S}: \mathbf{1 4 , 7 9 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,583 \mathrm{~kg} \\ & 627 \text { yen } \\ & \text { S: } \mathbf{1 , 5 0 8} \mathbf{~ k g} \\ & \mathbf{S : ~} \mathbf{6 0 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 55,272 \mathrm{~kg} \\ & 3,529 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,055 \mathrm{~kg} \\ & 626 \text { yen } \\ & \text { S: } \mathbf{6 , 0 5 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 2 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 330,809 \mathrm{~kg} \\ & 130,950 \text { yen } \\ & \text { S: } \mathbf{1 2 5 , 1 8 2} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 2 , 6 4 3} \text { yen } \\ & \hline \end{aligned}$	85,173 yen S: 2,543 yen
1933	$\begin{aligned} & \hline 62,413 \mathrm{~kg} \\ & 20,771 \mathrm{yen} \\ & \text { S: } \mathbf{6 , 6 8 3} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 7 0 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 2,118 \mathrm{~kg} \\ & 380 \text { yen } \\ & \mathrm{S}: ~--- \\ & \mathrm{S}:--- \end{aligned}$	$\begin{aligned} & 29,957 \mathrm{~kg} \\ & 6,713 \text { yen } \\ & \text { S: } \mathbf{2 5 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,704 \mathrm{~kg} \\ & 253 \text { yen } \\ & \text { S: } \mathbf{1 , 7 0 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 5 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 360,543 \mathrm{~kg} \\ & 107,539 \text { yen } \\ & \text { S: } \mathbf{1 2 2 , 1 8 6} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 9 , 6 1 6} \text { yen } \\ & \hline \end{aligned}$	81,436 yen S: 1,249 yen

Source: 1922-1932 Statistics: Nan'yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan’yôchô, 1934), pp. 350-353; and 1933 Statistics: Nan'yôchô, Daisankai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1935), pp. 124-125.

Table 4 Marine Products in the South Sea Islands: Quantity and Value (S: Saipan District = Saipan, Tinian, and Rota)

	Total	Dried Bonitos	Dried Tuna	Trepang	Shark Fin	$\begin{gathered} \hline \text { Canned } \\ \text { Tuna } \end{gathered}$
1922	19,957 yen	120 kg 160yen S: ---	$\begin{aligned} & --- \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 21,011 \mathrm{~kg} \\ & 19,797 \text { yen } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \end{aligned}$
1923	$\begin{aligned} & \text { 20,353 yen } \\ & \text { S: } 760 \text { yen } \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline 23,149 \mathrm{~kg} \\ & 20,353 \text { yen } \\ & \text { S: } \mathbf{1 , 2 0 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{7 6 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1924	38,480 yen S: 19,290 yen	$\begin{aligned} & 1,095 \mathrm{~kg} \\ & 3,404 \text { yen } \\ & \mathrm{S}: \mathbf{8 5 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{2 , 5 0 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,030 \mathrm{~kg} \\ & 3,744 \text { yen } \\ & \mathrm{S}:--- \\ & \mathrm{S}:--- \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 57,859 \mathrm{~kg} \\ & 30,969 \text { yen } \\ & \mathrm{S}: \mathbf{3 5 , 4 6 0} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 6 , 4 1 9} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 364 \mathrm{~kg} \\ & 363 \text { yen } \\ & \mathrm{S}: 364 \mathrm{~kg} \\ & \mathrm{~S}: 363 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1925	18,997 yen S: 4,240 yen	$\begin{aligned} & \hline 1,560 \mathrm{~kg} \\ & 4,116 \text { yen } \\ & \mathrm{S}: \mathbf{4 8 4} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 , 2 9 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,061 \mathrm{~kg} \\ & 2,264 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline 25,196 \mathrm{~kg} \\ & 12,072 \text { yen } \\ & \text { S: } \mathbf{2 , 9 6 6} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 7 9 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75 \mathrm{~kg} \\ & 150 \text { yen } \\ & \text { S: } \mathbf{7 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 5 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \mathrm{~kg} \\ & 15 \text { yen } \\ & \text { S: --- } \\ & \mathrm{S}: ~--- \\ & \hline \end{aligned}$
1926	$\begin{aligned} & \text { 77,414 yen } \\ & \text { S: 9,205 yen } \end{aligned}$	$\begin{aligned} & \hline 9,543 \mathrm{~kg} \\ & 28,540 \text { yen } \\ & \text { S: 3,293 } \mathbf{~ k g} \\ & \text { S: 8,780 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16,054 \mathrm{~kg} \\ & 38,541 \text { yen } \\ & \text { S: } \mathbf{1 9} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 14,861 \mathrm{~kg} \\ & 9,958 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 188 \mathrm{~kg} \\ & 375 \text { yen } \\ & \text { S: } \mathbf{1 8 8} \mathbf{~ k g} \\ & \text { S: } 375 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1927	40,940 yen S: 7,058 yen	$\begin{aligned} & \hline 4,751 \mathrm{~kg} \\ & 12,445 \text { yen } \\ & \text { S: } \mathbf{1 , 9 7 6} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 , 2 7 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 6,169 kg } \\ & 13,160 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9,326 \mathrm{~kg} \\ & 11,437 \text { yen } \\ & \text { S: } \mathbf{1 , 9 6 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 5 9 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 128 \mathrm{~kg} \\ & 190 \text { yen } \\ & \text { S: } \mathbf{1 2 8} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 9 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & --- \\ & \text {-- } \\ & \text { S: --- } \end{aligned}$
1928	111,424 yen S: 19,808 yen	$\begin{aligned} & \hline 18,893 \mathrm{~kg} \\ & 37,805 \text { yen } \\ & \mathrm{S}: \mathbf{2 , 2 3 5} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{5 , 9 6 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28,219 \mathrm{~kg} \\ & 45,160 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline 35,520 \mathrm{~kg} \\ & 27,453 \text { yen } \\ & \mathrm{S}: \mathbf{1 8 , 2 1 0} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 3 , 6 8 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 289 \mathrm{~kg} \\ & 415 \text { yen } \\ & \text { S: } 75 \mathrm{~kg} \\ & \text { S: } 160 \text { yen } \\ & \hline \end{aligned}$	--- --- S: --- S: ---
1929	$\begin{aligned} & \text { 220,209 yen } \\ & \text { S: 12,348 yen } \end{aligned}$	$\begin{aligned} & \hline 104,310 \mathrm{~kg} \\ & 138,122 \text { yen } \\ & \text { S: } \mathbf{2 , 5 8 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{6 , 8 8 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33,735 \mathrm{~kg} \\ & 48,629 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48,480 \mathrm{~kg} \\ & 27,399 \text { yen } \\ & \text { S: } \mathbf{9 , 8 8 5} \mathbf{~ k g} \\ & \text { S: } \mathbf{5 , 2 7 3} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 203 \mathrm{~kg} \\ & 190 \text { yen } \\ & \mathrm{S}: \mathbf{2 0 3} \mathbf{~ k g} \\ & \mathrm{S}: \mathbf{1 9 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$
1930	484,547 yen S: 23,730 yen	$\begin{aligned} & 232,825 \mathrm{~kg} \\ & 434,743 \text { yen } \\ & \text { S: } \mathbf{1 3 , 6 5 4} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 1 , 4 2 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22,954 \mathrm{~kg} \\ & 28,815 \text { yen } \\ & \text { S: } \mathbf{1 1 3} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 5 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31,271 \mathrm{~kg} \\ & 16,928 \text { yen } \\ & \text { S: } \mathbf{1 , 1 4 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 , 5 2 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 668 \mathrm{~kg} \\ & 530 \text { yen } \\ & \mathrm{S}: \mathbf{6 6 8} \mathbf{~ k g} \\ & \mathrm{S}: 530 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1931	$\begin{aligned} & \text { 1,064,341 yen } \\ & \text { S: 97,466 yen } \end{aligned}$	$\begin{aligned} & \hline 842,210 \mathrm{~kg} \\ & 997,840 \mathrm{yen} \\ & \text { S: 68,044 kg } \\ & \text { S 94,236 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42,665 \mathrm{~kg} \\ & 44,388 \text { yen } \\ & \text { S: } 755 \mathrm{~kg} \\ & \text { S: } 855 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14,213 \mathrm{~kg} \\ & 6,829 \text { yen } \\ & \text { S: } \mathbf{2 , 7 6 0} \mathbf{~ k g} \\ & \text { S: } \mathbf{2 , 1 0 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 794 \mathrm{~kg} \\ & 541 \text { yen } \\ & \mathrm{S}: 386 \mathbf{~ k g} \\ & \text { S: } 269 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1932	$\begin{aligned} & \text { 981,634 yen } \\ & \text { S: 214,213 yen } \end{aligned}$	$\begin{aligned} & \hline 972,875 \mathrm{~kg} \\ & 917,989 \text { yen } \\ & \text { S: 192,172 kg } \\ & \text { S: 210,072yen } \end{aligned}$	$\begin{aligned} & 73,746 \mathrm{~kg} \\ & 55,985 \text { yen } \\ & \text { S: 3,152 kg } \\ & \text { S: 3,278yen } \end{aligned}$	$\begin{aligned} & \hline 3,412 \mathrm{~kg} \\ & 2,266 \text { yen } \\ & \text { S: } \mathbf{1 , 0 8 7} \mathbf{~ k g} \\ & \text { S: } \mathbf{7 2 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 206 \mathrm{~kg} \\ & 138 \text { yen } \\ & \text { S: } \mathbf{2 0 6} \mathbf{~ k g} \\ & \text { S: } \mathbf{1 3 8} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$
1933	$1,747,595$ yen S: 383,173 yen	$\begin{aligned} & 1,305,290 \mathrm{~kg} \\ & 1,662,066 \text { yen } \\ & \text { S: 297,654 kg } \\ & \text { S: } \mathbf{3 7 9 , 6 5 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 68,626 \mathrm{~kg} \\ & 76,410 \text { yen } \\ & \text { S: } \mathbf{4 , 1 0 0} \mathbf{~ k g} \\ & \text { S: 3,493 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 5,216 \mathrm{~kg} \\ & 2,623 \text { yen } \\ & \text { S: --- } \\ & \text { S: --- } \end{aligned}$	60 kg 30 yen S: 60 kg S: 30 yen	$\begin{aligned} & \text { ? } \\ & \text { 6,466 yen } \\ & \text { S: --- } \\ & \text { S: --- } \\ & \hline \end{aligned}$

Source: 1922-1932 Statistics: Nan'yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1934), pp. 354-355; and 1933 Statistics: Nan'yôchô, Daisankai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1935), p. 126.

The Rise of Fishing Industries (1931-1941)

As seen in Table 4, the value of marine products in the South Sea Islands rapidly increased after 1930 - 2.2 times, 4.8 times, and 7.9 times in 1930, 1931, and 1933 respectively, compared with 1929. The industry that once concentrated on tortoise and other shells changed its focus and half the total catch was a single product - bonito.

Hara Kô's bonito fishing efforts had success after his experience in 1927 and 1929 in the South Sea Islands. Hara, from Makurazaki, Kagoshima, showed that bonito fishing in the South Sea Islands could be highly profitable, and his efforts attracted other bonito fishermen from Japan.

In 1931Anbara Ichizô organized Nan’yô Suisan Kigyô Kuniai, a business association for bonito and tuna industries in Yaizu, Shizuoka. Nan'yô Suisan established a fishing base at Malakal, Palau, opened a Saipan office, and began bonito fishing. The company also purchased bonito caught by Okinawan fishermen.

Seeking more investment, Anbara asked Nan’yô Kôhatsu President Matsue Haruji for financial support. Originally a sugar growing and processing company, Nan'yô Kôhatsu established a fishery department within the company to support Nan'yô Suisan’s fishing activities. In January 1935, Anbara and Matsue established the Nankô Suisan Kabushiki Kaisha or Nankô Marine Production Company, capitalized with 1.2 million yen. The president was Matsue, and the vice President was Anhara, with headquarters at Palau. An office on Saipan was opened as well. Photo 1 shows Nankô Suisan's fishermen doing pole-and-line bonito fishing.

By 1938, there were two more bonito fishery and canning companies - Kimi Suisan at Palau and Hamaichi Shôji at Palau and Chuuk -in addition to Nankô Suisan. Nankô Suisan mainly employed fishermen from Okinawa and Yaizu, and it was the only bonito fishery and processing company on Saipan. By 1942, Nankô Suisan was responsible for 90% of bonito caught in the South Sea Islands. ${ }^{9}$ As to the background of the monopoly, Nankô Suisan's business was strongly supported by the South Seas Bureau, the Overseas Affairs Ministry (an upper body of the South Seas Bureau), and the Japanese Navy, which was responsible for the South Sea Islands ocean area.

The South Sea Islands Ten-Year Development Plans (1935): With Japan’s withdrawal from the League of Nations in 1935, the Overseas Affairs Ministry of the Japanese government prepared a comprehensive ten-year development plan for the islands. The plan designated the islands as part of Japan's outer defence system, and as an advanced base for future planned expansion to the south. The development plan called for construction of infrastructure, particularly at Saipan and Palau, which included harbour facilities, roads, communication facilities, water supply systems to vessels, and housing - all of which were also necessary for the improvement of fisheries. The plan also budgeted 4.4 million yen for marine research and for the fishing industries (water service for fishing vessels, ice manufacture, cold storage, oil storage, shipbuilding, ironworks, and repair facilities at fishing ports). The plan also promoted excursions into new fishing grounds at New Guinea, and in the Arafra, Banda, Celebes, Sulu, and Flores Seas. The advance base for all of this expansion was designated the South Sea Islands.

Fisheries as National Policy: Because of Japan's worsening international reputation, and isolation in the early 1930s, Japanese fishing vessels were shut out from the major southern fishing grounds near the Dutch East Indies. ${ }^{10}$ In order to achieve some sort of breakthrough, the government designed the "Fundamentals of National Policy" in August 1936. The policy called for expansion into new fishing grounds south of the South Sea Islands. Accordingly, the South Seas Bureau established the Marine Laboratory at Palau in 1937, for research on fishing, fish processing, and fishingtechniques.

Marine resources research focused on the bonito fishery grounds in the Western and Central Caroline Islands. Also in 1937, Nan’yô Takushoku Kabushiki Kaisha (South Seas Colonization Company) was established to carry out government policy under the guidance of the Overseas Affairs Ministry, and Nankô Suisan was purchased and operated by this semi-governmental company. With the financial assistance of Nan'yô Takushoku, Nankô Suisan increased its capital from 2.5 million yen in 1937 to 5.0 million yen in 1939, for the purchase of equipment for the tuna industry, expansion of existing facilities, and construction of a tuna-canning factory at Palau. The company's capital was again increased to 10 million yen in 1941, to build a ship for longline fishing only, and a refrigerator ship as well as to install ice manufacture, freezing, and cold storage facilities. In addition to bonito fisheries, Nankô Suisan began tuna fisheries.

[^10]This entailed purchase of tuna and operation of transportation facilities and related businesses (shipbuilding, ironworks, and finance) - all with government assistance.

Bonito Fisheries: The bonito catch in the Saipan district was always ranked third behind Palau and Chuuk. Saipan had two characteristic disadvantages. One was the lack of bait. As mentioned above, Saipan lacked baitfish, nan'yô katakushi iwashi (Engraulis heterolobus [Rueppel]). Instead, young fish, akamuro (Caecionidae), were used at Saipan. Every September, schools of akamuro approached the west coast of Saipan. For one month while akamuro stayed at depths of 15 to 25 meters in rocky coral areas, vessels stopped fishing for bonito. Okinawan divers searched the bait area and used stretch nets called chûsô shikiami (25 meters height, and 12 meters width) amongst the rocks in 15 meters depths. The akamuro were chased by the divers into the nets. The live akamuro, 10-centimeters long, were kept alive in submerged fishnets (katsusuami) for 30 to 40 days. Only skilled Okinawan divers could catch akamuro using this method.

Another disadvantage was that the bonito-fishing season in waters around the Saipan district was shorter than at Palau and Chuuk, because of Saipan's higher latitude. In comparison to the open ocean fishing (yûri gyojô) in the waters around Palau, Saipan's fishing grounds were close to the reef that rose steeply from the ocean bottom and neighboring areas (sone gyojô) where bonito were always found though the number was not large. Therefore, the catches at Saipan were not big takes. During the off-season around Saipan, pole-and-line fishing was conducted north of Anatahan, especially in the area of Maug Island. However, the conditions in the waters around Maug Island - sone gyojô - were the same as at Saipan so that the catch was limited. Fishing vessels also found schools of migratory fish and fish congregating near drift timbers and caught them. ${ }^{11}$

As of 1935, Nankô Suisan's Saipan office (5,600 square meters) in Garapan owned four bonito vessels (17 tons each) and contracted with another four vessels for purchase of fish, for a total of eight vessels. All bonito caught were transported in lighters from the fishing vessels at the port and unloaded at the wooden pier that jutted out 40 meters from the beach. All fish were then taken to the factory by handcart. Processing capacity at the factory was 20 tons/day. Ice manufacturing was 5 tons/day. In 1936, a new factory was built alongside a quay at Chikkô (Tanapag), north of Garapan. It included an ice manufacturing facility (15 tons/day), refrigeration facility (5 tons/day), cold storage facility (5 tons/day), and ice warehouse (400 tons). The Saipan factories processed fresh bonito into toasted, dried, and shaved dried bonito. Ironwork for repairing fishing vessels was done at the Nan'yô Kôhatsu's factory.

For processing bonitos caught by three fishing vessels operating in the outer ocean north of Saipan, a branch factory was built at Pagan Island. The factory was able to cut and process bonito into rough dried bonito (arabushi) before sending it to the Saipan factory for completion of the process.

[^11]Table 5 shows the bonito fishery catches at Saipan. After Nan'yô Suisan began business on Saipan, the catches reached 3,697,298 kg in 1937, up from the $564,258 \mathrm{~kg}$ caught in 1931 - a 6.6 times increase in six years. The 1937 catch was the peak of that four-year fishing cycle. The catch at Saipan also more than doubled in between 1936 and 1937. After that, the catch decreased for two years, but reached 3,379,048 kg in 1940.

A Nankô Suisan publication, Nan'kô Suisan no ashiato (Nan'kô Suisan's Footmark), reported that 1941 was the peak of the next four-year bonito cycle. Again, according to the publication, the total value of the bonito catch in 1941 was worth $6,159,000$ yen, and dried bonito was worth $6,816,000$ yen. ${ }^{12}$ However, corroborating data were not found in the South Seas Bureau's handbook. Therefore, in Table 5 note ***, the claim that 1941 was a bumper year cannot be verified.

Again, referring to Table 5, the total number of bonito vessels in 1937 and 1938 was 145. Of these, Saipan had 36 in 1937 (25% of the total), and 34 in 1938 (23% of the total). Weight of Saipan's bonito catch was 11% of the total in 1937, and 17% in 1938. Catch per vessel at Saipan was less than the average catch in the South Sea Islands because of poor fishing grounds around Saipan, as mentioned before.

More than 90% of the bonito caught was processed into dried bonito, called "nankô bushi" (Nankô’s dried bonitos). Of that total, Nankô Suisan’s factories produced nearly 80% of the total dried bonito. After processing, all dried bonito was shipped to Japan, amounting to about 60% of the total consumption of dried bonito in Japan in 1937. ${ }^{13}$ In Photo 2, Nankô Suisan employees pack dried bonito in wooden boxes.

[^12]In contrast, the Japanese residents in the islands consumed fresh fish such as horse mackerel, Spanish mackerel, striped mullet and other reef fish (meyasu, sunakuchi, kamasu, and itoyori).

The fishing industry's exemption from fuel taxation was abolished in 1937 because of the costly Japan-China War. The price of fuel suddenly rose in Japan and influenced fishery operations in the South Sea Islands. In October 1937, the South Seas Bureau promulgated "Regulations on Financial Assistance to Fishery Management" that subsidized 30% to 50% of the cost of the fisheries. One of the reasons for this large government assistance was the importance of dried bonito to support the food requirements of the Japanese military in China and at home.

Tuna Fisheries: Until the mid-1930s, Japan’s tuna fisheries were secondary and seasonal operations. Tuna was occasionally caught during pole-and-line bonito fishing. After some home-based longliners began catching tuna near the Western Caroline Islands in 1938, tuna fishing became a year-round industry in the South Sea Islands.

Some records show that in 1938, Daini Shinkômaru (118 tons), belonging to Tôhoku Shinkôsha, was loaded to capacity with Pacific bluefin tuna (Thunnus orientalis) and yellowfin, 200 nautical miles east of the Mariana Islands and returned to Japan. In autumn of the same year, Fukujumaru (80 tons), from Wakayama, operated tuna fisheries off Saipan. Hideyoshimaru (99 tons) from Hiyori Fushimaru port, Wakayama, returned to its homeport in Japan with a full load of tuna after 60-70 days of operation in the "South Seas." Such good catches attracted tuna fishermen from all over Japan.

In 1938, the South Seas Bureau Marine Laboratory found a new yellowfin fishing ground near the north equatorial current. It was estimated that the value of catches in these waters would be close to 20 million yen. By 1939, the number of Japanese longliners fishing the grounds south of 20-degree north latitude was 76. ${ }^{14}$ Although Japan had been exporting albacore to the U.S., it suddenly became more difficult after 1938, because the U.S. imposed custom duties of 30% to 45% and then 75%. ${ }^{15}$ Partly as a result of these increases, the Japanese long-liners, which were used for taking albacore in Japan's eastern fishing ground, changed their grounds to the south, aiming at yellowfin. Through this effort, the Japanese fisheries expanded from Saipan, south to New Guinea, New Britain, and the Solomon Islands.

As mentioned above, one of the greatest problems these vessels faced was how to keep tuna fresh during the long return voyage to Japan. Wooden ships of less than 100 tons did not have an ice machine. As a result, Saipan became an important supply base because Nankô Suisan had ice making machines and cold storage there. In addition, fresh water and food were located at Saipan.

[^13]Table 5 Bonito Catches and Dried Bonito Production in the South Sea Islands (S: Saipan District = Saipan, Tinian, and Rota)

	Permits of Bonito Fishery	Bonito Catches (kg)	Bonito Catches (yen)	$\begin{gathered} \hline \text { Dried Bonito } \\ (\mathbf{k g}) \\ \hline \end{gathered}$	Dried Bonito (yen)
1922	1 (Bonito \& Tuna) S: 1	$\begin{aligned} & 9,713 \mathrm{~kg} \\ & \text { S: 2,363 kg } \end{aligned}$	$\begin{aligned} & 6,770 \text { yen } \\ & \text { S: } \mathbf{1 , 8 9 0} \text { yen } \end{aligned}$	$\begin{aligned} & 120 \mathrm{~kg} \\ & \mathrm{~S}:--- \end{aligned}$	$\begin{aligned} & 160 \text { yen } \\ & \text { S: --- } \end{aligned}$
1923	$2 \text { (Bonito \& Tuna) }$ $\text { S: } 1$	$\begin{aligned} & \hline 7,305 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{2 , 8 1 3} \mathrm{kg} \end{aligned}$	$\begin{aligned} & \text { 5,068 yen } \\ & \text { S: } \mathbf{2 , 2 5 0} \text { yen } \end{aligned}$	S: ---	S: ---
1924	3 (Bonito \& Tuna) S: 2	$\begin{aligned} & 17,741 \mathrm{~kg} \\ & \mathbf{S : ~} \mathbf{9 , 0 9 7} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & 11,580 \text { yen } \\ & \text { S: } \mathbf{6 , 0 6 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,095 \mathrm{~kg} \\ & \mathbf{s} \cdot \mathbf{8 5 5} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 3,404 \text { yen } \\ & \text { S: } \mathbf{2 , 5 0 8} \text { yen } \\ & \hline \end{aligned}$
1925	4 (Bonito \& Tuna) S: 3	$\begin{aligned} & 36,319 \mathrm{~kg} \\ & \text { S: } \mathbf{1 4 , 8 0 5} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 17,520 yen } \\ & \text { S: 6,348 yen } \end{aligned}$	$\begin{aligned} & 1,560 \mathrm{~kg} \\ & \text { S: } \mathbf{4 8 4} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 4,116 yen } \\ & \text { S: } \mathbf{1 , 2 9 2} \text { yen } \end{aligned}$
1926	$\begin{aligned} & 11 \text { (Bonito \& Tuna) } \\ & \text { S: } \mathbf{6} \\ & \hline \end{aligned}$	$\begin{aligned} & 92,284 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{4 4 , 8 4 2 \mathrm { kg }} \\ & \hline \end{aligned}$	$\begin{aligned} & 42,282 \text { yen } \\ & \mathrm{S}: \mathbf{1 7 , 9 3 7} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 9,548 \mathrm{~kg} \\ & \text { S: } \mathbf{3 , 2 9 3} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 28,540 \text { yen } \\ & \text { S: } \mathbf{8 , 7 8 0} \text { yen } \\ & \hline \end{aligned}$
1927	$\begin{aligned} & 12 \text { (Bonito \& Tuna) } \\ & \text { S: } \mathbf{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 52,954 \mathrm{~kg} \\ & \text { S: } \mathbf{2 8 , 1 1 0} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 23,781 \text { yen } \\ & \text { S: 10,778 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 4,751 \mathrm{~kg} \\ & \text { S: } \mathbf{1 , 9 7 6} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 12,445 \text { yen } \\ & \text { S: } 5,270 \text { yen } \\ & \hline \end{aligned}$
1928	12 (Bonito \& Tuna) S: 5	$\begin{aligned} & \hline 163,714 \mathrm{~kg} \\ & \mathbf{2 6 , 4 9 4} \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 48,644 yen } \\ & \text { S: 10,219 yen } \end{aligned}$	$\begin{aligned} & 18,893 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{2 , 2 3 5} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \hline 37,805 \text { yen } \\ & \text { S: } \mathbf{5 , 9 6 0} \text { yen } \end{aligned}$
1929	17 (Bonito \& Tuna) S: 6	$\begin{aligned} & 469,511 \mathrm{~kg} \\ & \text { S: } \mathbf{2 4 , 6 9 0} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 126,937 yen } \\ & \text { S: } \mathbf{9 , 8 7 6} \text { yen } \end{aligned}$	$\begin{aligned} & 104,310 \mathrm{~kg} \\ & \mathrm{~S}: 2,580 \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 138,122 yen } \\ & \text { S: } \mathbf{6 , 8 8 5} \text { yen } \end{aligned}$
1930	24 (Bonito \& Tuna) S: 8	$\begin{aligned} & 1,335,720 \mathrm{~kg} \\ & \text { S: } \mathbf{2 5 8 , 0 0 4} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 327,861 yen } \\ & \text { S: 56,142 yen } \end{aligned}$	$\begin{aligned} & 282,825 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 3 , 6 5 4} \mathrm{kg} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 434,743 yen } \\ & \text { S: } \mathbf{2 1 , 4 2 5} \text { yen } \end{aligned}$
1931	36 (Bonito \& Tuna) S: 7	$\begin{aligned} & \text { 2,816,808 kg } \\ & \text { S: 564,258 kg } \end{aligned}$	$\begin{aligned} & 622,983 \text { yen } \\ & \text { S: } \mathbf{1 2 2 , 0 2 2} \text { yen } \end{aligned}$	$\begin{aligned} & 842,210 \mathrm{~kg} \\ & \text { S: } \mathbf{6 8 , 0 4 4} \mathrm{kg} \end{aligned}$	$\begin{aligned} & \text { 997, } 840 \text { yen } \\ & \text { S: } 94.236 \text { ven } \end{aligned}$
1932	37 (Bonito \& Tuna) S: 10	$\begin{aligned} & \hline 4,861,263 \mathrm{~kg} \\ & \text { S: } \mathbf{1 , 3 0 9 , 7 2 5 \mathrm { kg }} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 944,261 \text { yen } \\ & \text { S: 317,916 yen } \end{aligned}$	$\begin{aligned} & 972,875 \mathrm{~kg} \\ & \text { S: } \mathbf{1 9 2 , 1 7 2 \mathrm { kg }} \end{aligned}$	$\begin{aligned} & \text { 917,989 yen } \\ & \text { S: 210,072 yen } \end{aligned}$
1933	51 (Bonito \& Tuna) S: $\mathbf{1 6}$	$\begin{aligned} & 6,889,401 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 , 7 6 2 , 3 0 0} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,512,631 \text { yen } \\ & \mathrm{S}: \mathbf{3 7 0 , 1 8 4} \text { yen } \end{aligned}$	$\begin{aligned} & 1,305,290 \mathrm{~kg} \\ & \mathbf{S : ~ 2 9 7 , 6 5 4 ~ k g ~} \end{aligned}$	$\begin{aligned} & 1,662,066 \text { yen } \\ & \text { S: } \mathbf{3 7 9 , 6 5 0} \text { yen } \end{aligned}$
1934	$\begin{aligned} & \hline 76 \\ & \text { S: } 23 \end{aligned}$	$\begin{aligned} & \hline 8,956,411 \mathrm{~kg} \\ & \text { S: } \mathbf{2 , 5 1 6 , 0 0 0} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 2,205,050 yen } \\ & \text { S: } \mathbf{5 0 3 , 2 0 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,594,170 \mathrm{~kg} \\ & \text { S: 419,512 kg } \end{aligned}$	$\begin{aligned} & 1,714,590 \text { yen } \\ & \text { S: 470,469 yen } \end{aligned}$
1935	$\begin{aligned} & \hline 67 \\ & \text { S: } \mathbf{1 7} \end{aligned}$	$\begin{aligned} & 11,722,284 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 , 7 8 5 , 9 7 7} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \hline 1,317,919 \text { yen } \\ & \mathrm{S}: \mathbf{4 2 0 , 9 8 3} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 2,097,388 \mathrm{~kg} \\ & \mathbf{S : ~ 2 6 4 , 1 3 3 ~ k g} \end{aligned}$	$\begin{aligned} & \text { 2,127,424 yen } \\ & \text { S: } \mathbf{3 6 0 , 5 9 3} \text { yen } \end{aligned}$
1936	$\begin{aligned} & \hline 87 \\ & \text { S: } 19 \end{aligned}$	$\begin{aligned} & \hline 14,265,772 \mathrm{~kg} \\ & \text { S: } \mathbf{1 , 6 9 6 , 0 0 6} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,468,996 \text { yen } \\ & S: \mathbf{2 2 0 , 4 8 1} \text { yen } \end{aligned}$	$\begin{aligned} & 2,422,856 \mathrm{~kg} \\ & \text { S: } \mathbf{4 2 5 , 0 7 2 \mathrm { kg }} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,671,357 \text { yen } \\ & \text { S: } \mathbf{5 8 1 , 6 2 8} \text { yen } \\ & \hline \end{aligned}$
1937	$\begin{aligned} & 145 \\ & \text { S: } 36 \end{aligned}$	$\begin{aligned} & \hline 34,060,809 \mathrm{~kg} \\ & \text { S: } 3,697,298 \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,833,905 \text { yen } \\ & \text { S: } \mathbf{3 8 2 , 2 1 0} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 5,812,745 \mathrm{~kg} \\ & \text { S: } \mathbf{6 2 6 , 1 7 6} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 5,081,774 yen } \\ & \text { S: } \mathbf{6 0 1 , 7 3 8} \text { yen } \end{aligned}$
1938	$\begin{aligned} & \hline 145 \\ & \mathrm{~S}: 34 \end{aligned}$	$\begin{aligned} & 14,958,592 \mathrm{~kg} \\ & \text { S: } \mathbf{2 , 5 9 2 , 0 2 9 \mathrm { kg }} \end{aligned}$	$\begin{aligned} & 1,356,969 \text { yen } \\ & \mathbf{S}: \mathbf{3 1 5 , 4 1 1} \text { yen } \end{aligned}$	$\begin{aligned} & 2,501,222 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{4 5 1 , 8 8 3} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 2,429,521 yen } \\ & \mathrm{S}: \mathbf{4 2 6 , 6 5 7} \text { yen } \end{aligned}$
1939	135	$\begin{aligned} & 19,019,188 \mathrm{~kg} \\ & \text { S: } \mathbf{1 , 2 9 7 , 3 5 4} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 2,462,707 \text { yen } \\ & \text { S: } \mathbf{3 5 8 , 9 9 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3,229,686 kg } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \text { 4,963,052 yen } \\ & \text { S: --- } \end{aligned}$
1940	$\begin{aligned} & \hline 133 \\ & \text { S: } 25 \end{aligned}$	$\begin{aligned} & 18,233,967 \mathrm{~kg} \\ & \text { S: } \mathbf{3 , 3 7 9 , 0 4 8} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,430,385 \text { yen*** } \\ & \text { S: } 721,560 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,973,270 \mathrm{~kg} \\ & \text { S: 561,122 kg } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 5,193,000 yen } \\ & \text { S: } \mathbf{1 , 1 9 0 , 1 4 6} \\ & \hline \end{aligned}$
1941*	$\begin{aligned} & 129 \\ & \text { S: } 26 \end{aligned}$	$\begin{aligned} & 11,545,053 \mathrm{~kg} \\ & \text { S: } \mathbf{1 , 2 9 7 , 3 5 4} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 2,918,934 yen*** } \\ & \text { S: 358,996 yen } \end{aligned}$	$\begin{aligned} & 1,333,840 \mathrm{~kg} \\ & \text { S: } \mathbf{1 8 2 , 1 5 2 \mathbf { k g }} \end{aligned}$	$\begin{aligned} & \text { 4,250,434 yen*** } \\ & \text { S: 491,227 yen } \\ & \hline \end{aligned}$
1942	$\begin{aligned} & 113 \\ & \text { S: } 27 \end{aligned}$	$\begin{aligned} & 14,872,781 \mathrm{~kg}^{* *} \\ & \mathrm{~S}:--- \end{aligned}$	S: ---	$\begin{aligned} & \text { 1,905,130 kg** } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \text { 5,307,063 yen** } \\ & \text { S: --- } \end{aligned}$

Sources: 1922-1932 statistics: Nan'yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1934), pp. 348-355; 1933 statistics: Nan'yôchô, Daisankai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1935), p. 125-126.
1934-1942 statistics for bonito fishery permits: Nan’yôchô, Nan'yô Guntô yôran, 1934-1942.
1934-1937 statistics for fisheries except for bonito fishery permits: Nan'yôchô, Nan'yôchô Suisan Shinkenjô yôran (Palau: Nan'yôchô Suisan Shikenjô, 1938), pp. 42-58.
1938, 1940, and 1941 statistics: Nanyôchô, Nan'yô Guntô yôran, 1939, 1941, and 1942.
1939 and 1942 statistics: Ôkurashô Kanrikyoku, Nihonjin no kaigai katsudô ni kansuru rekishiteki chôsa: Tsûkan dai nijûissatsu Nanyô Guntô hen daini bunsatsu: Dainibu Nan'yô Guntô keizai sangyô, 1949, p. 86-87, and pp. 147-148.

* All statistics for bonito fishery for 1941 and 1942, printed in 1942 and 1943 editions of Nan'yô Guntô yôran, respectively, are identical. The statistics for 1941 are used in this table.
** This statistics were cited from the text of Ôkurashô Kanrikyoku publication.
*** According to Kawakami Zenkurô's Nankô Suisan no ashiato, the bonito catch in 1940 was 5,255,000 yen in value; $6,159,000$ yen in 1941; and the value of dried bonito in 1941 was $6,816,000$ yen.

Table 6 shows tuna catches in the South Sea Islands. In 1939, 40 longliners (120 tons) from Japan, mainly from Misaki, Kanagawa, and 10 from the South Sea Islands, caught $41,400,000 \mathrm{~kg}$. However, because of their small size and low numbers, ships from the South Sea Islands caught only $1.3 \%(551,250 \mathrm{~kg})$ of total tuna catch for $1939 .{ }^{16}$

Nankô Suisan became involved in tuna fisheries after contracting with longliners in Fukushima in November 1939, and in Miyagi in 1940. It purchased bait - nakaba iwashi (one of the sardines) - in Misaki, and caught yellowfin tuna and bigeye tuna in the seas near Palau. The company began a full-scale tuna fishery in 1941, once it was determined that the catch would remain fresh after long-distance transportation.

Yellowfin tuna and bigeye tuna were the two major tuna fisheries in the South Sea Islands, but total catch of the former was considerably larger than the latter. The longliners also caught striped marlin, bonito and shark. Flying fish (tobiowo), and brown-striped mackerel scad (muroaji) were the main baitfish on Saipan, while brownstriped mackerel scad (muroaji) and sardine (iwashi) were used in the waters around Palau.

According to Table 6, tuna caught by longliners in the South Sea Islands increased from $858,793 \mathrm{~kg}$ in 1940, to $1,023,093 \mathrm{~kg}$ in 1941, after Nankô Suinsa began its tuna fishery. However, the catch in waters around the Saipan district decreased rapidly from $84,506 \mathrm{~kg}$ to $33,699 \mathrm{~kg}$ for unknown reasons.

In September 1941, a tuna-canning factory was opened on Malakal Island, Palau, after the catch of yellowfin started looking up. In December 1940, cans of tuna in oil were exported to New York from Palau, via Java in order to get around the high tariff imposed on Japanese marine products. Mitsubishi Shoji, a major trading firm in Japan, also exported 10,000 cases of canned tuna to Germany during this same period. Frozen fillet of yellowfin and bigeye tuna were also exported to the Chinese cities of Tientsin and Beijing. There are no details on tuna caught in waters around Saipan during this time period.

Graph 2 presents data on bonito and tuna catches in the Saipan district during 1922-1941. Note that the marked increase in bonito in the early 1930s is not matched by a similar increase in tuna. In all years, the bonito catch greatly exceeded the tuna catch. Furthermore, bonito was cyclical in that every three or four years the catches were huge, viz, in 1932, 1935, and 1939.

[^14]Table 6 Tuna Catches and Dried Tuna Production in the South Sea Islands (S: Saipan District = Saipan, Tinian, and Rota)

	Permits of Tuna Fishery	Tuna Catches (kg)	Tuna Catches (yen)	Dried Tuna (kg)	Dried Tuna (yen)
1922	$\begin{aligned} & 1 \text { (Bonito \& Tuna) } \\ & \text { S: } \mathbf{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,075 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 , 3 1 2} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 3,730 \text { yen } \\ & \text { S: } 875 \text { yen } \\ & \hline \end{aligned}$	S: ---	$\begin{aligned} & \text {--- } \\ & \text { S: --- } \end{aligned}$
1923	$\begin{aligned} & 2 \text { (Bonito \& Tuna) } \\ & \text { S: } \mathbf{1} \end{aligned}$	$\begin{aligned} & 6,652 \mathrm{~kg} \\ & \text { S: } \mathbf{1 , 2 5 2} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 3,673 yen } \\ & \text { S: } \mathbf{8 8 8} \text { yen } \end{aligned}$	$\begin{aligned} & \text {--- } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \hline--- \\ & \text { S: --- } \end{aligned}$
1924	$\begin{aligned} & 3 \text { (Bonito \& Tuna) } \\ & \text { S: } 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11,951 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 , 5 3 4} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 5,971 yen } \\ & \text { S: } \mathbf{1 , 0 2 4} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 1,030 \mathrm{~kg} \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \text { 3,744 yen } \\ & \text { S: --- } \end{aligned}$
1925	4 (Bonito \& Tuna) S: $\mathbf{3}$	$\begin{aligned} & 12,229 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 , 4 0 3} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4,557 \text { yen } \\ & \text { S: } 749 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,061 \mathrm{~kg} \\ & \mathrm{~S}:--- \end{aligned}$	$\begin{aligned} & \text { 2,264 yen } \\ & \text { S: --- } \end{aligned}$
1926	11 (Bonito \& Tuna) S: 6	$\begin{aligned} & 55,534 \mathrm{~kg} \\ & \mathrm{~s}: \mathbf{2 , 3 1 4} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \hline 22,423 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 2 3 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 16,054 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 9} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 38,541 \text { yen } \\ & \text { S: } 50 \text { yen } \end{aligned}$
1927	12 (Bonito \& Tuna) S: 6	$\begin{aligned} & 54,266 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{2 , 9 0 6} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24,327 \text { yen } \\ & \mathrm{S}: \mathbf{1 , 4 7 5} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,169 \mathrm{~kg} \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & 13,160 \text { yen } \\ & \text { S: --- } \end{aligned}$
1928	12 (Bonito \& Tuna) S: 5	$\begin{aligned} & 164,182 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 , 2 6 0} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & 38,629 \text { yen } \\ & \mathrm{S}: \mathbf{6 1 8} \text { yen } \end{aligned}$	$\begin{aligned} & 28,219 \mathrm{~kg} \\ & \mathrm{~S}:--- \end{aligned}$	$\begin{aligned} & \hline 45,160 \text { yen } \\ & \text { S: --- } \end{aligned}$
1929	$\begin{aligned} & 17 \text { (Bonito \& Tuna) } \\ & \text { S: } 6 \end{aligned}$	$\begin{aligned} & 172,001 \mathrm{~kg} \\ & \text { S: } 562 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { 31,825 yen } \\ & \text { S: } 300 \text { yen } \end{aligned}$	$\begin{aligned} & \text { 33,735 kg } \\ & \text { S: --- } \end{aligned}$	$\begin{aligned} & \text { 48,629 yen } \\ & \text { S: --- } \end{aligned}$
1930	24 (Bonito \& Tuna) S: $\mathbf{8}$	$\begin{aligned} & 111,997 \mathrm{~kg} \\ & \mathrm{~S}: 4,534 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 13,947 \text { yen } \\ & \text { S: } \mathbf{2 , 4 9 3} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 22,954 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 1 3} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 28,815 \text { yen } \\ & \text { S: } 255 \text { yen } \end{aligned}$
1931	36 (Bonito \& Tuna) S: 7	$\begin{aligned} & 211,910 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 6 , 7 3 4} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \hline 29,898 \text { yen } \\ & \mathbf{S : 5 , 6 2 2} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 42,665 \mathrm{~kg} \\ & \mathrm{~S}: 755 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \hline 44,388 \text { yen } \\ & \text { S: } 855 \text { yen } \end{aligned}$
1932	$\begin{aligned} & 37 \text { (Bonito \& Tuna) } \\ & \text { S: } 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 361,445 \mathrm{~kg} \\ \mathrm{~S}: 48,244 \mathrm{~kg} \\ \hline \end{array}$	$\begin{aligned} & \text { 50,801 yen } \\ & \text { S: } \mathbf{1 5 , 4 3 8} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 73,746 \mathrm{~kg} \\ & \mathrm{~S}: 3,152 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { 55,985 yen } \\ & \text { S: 3,278 yen } \end{aligned}$
1933	$\begin{aligned} & \text { 51 (Bonito \& Tuna) } \\ & \text { S: } 16 \end{aligned}$	$\begin{aligned} & 374,796 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{9 , 5 8 4} \mathbf{k g} \end{aligned}$	$\begin{aligned} & \text { 59,811 yen } \\ & \mathbf{S : ~} \mathbf{2 , 9 0 8} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 68,626 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{4 , 1 0 0} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 76,410 \text { yen } \\ & \text { S: } \mathbf{3 , 4 9 3} \text { yen } \end{aligned}$
1934		$\begin{aligned} & 427,041 \mathrm{~kg} \\ & \text { S: } \mathbf{2 7 , 2 8 9} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & 116,449 \text { yen } \\ & \text { S: } \mathbf{9 , 3 6 6} \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 93,329 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{3 , 1 6 0} \mathbf{k g} \end{aligned}$	$\begin{aligned} & \text { 85,237 yen } \\ & \text { S: } \mathbf{2 , 2 9 3} \text { yen } \end{aligned}$
1935	$\begin{aligned} & 13 \\ & \text { S: } 10 \end{aligned}$	$\begin{aligned} & 480,014 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{4 2 , 9 1 5} \mathrm{kg} \\ & \hline \end{aligned}$	$\begin{aligned} & 105,501 \text { yen } \\ & \text { S: } \mathbf{1 5 , 5 3 0} \text { yen } \end{aligned}$	$\begin{aligned} & 102,404 \mathrm{~kg} \\ & \text { S: 6,264 kg } \end{aligned}$	$\begin{aligned} & \text { 99,485 yen } \\ & \mathrm{S}: \mathbf{5 , 1 7 2} \text { yen } \end{aligned}$
1936		$\begin{aligned} & \hline 587,116 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 5 1 , 0 1 9} \mathbf{~ k g} \\ & \hline \end{aligned}$	$\begin{aligned} & 110,160 \text { yen } \\ & \text { S: } 52,857 \text { yen } \\ & \hline \end{aligned}$	$\begin{aligned} & 71,972 \mathrm{~kg} \\ & \mathrm{~S}:--- \end{aligned}$	$\begin{aligned} & \text { 75,172 yen } \\ & \text { S: --- } \end{aligned}$
1937	$\begin{aligned} & \hline 7 \\ & \mathrm{~S}: 3 \end{aligned}$	$\begin{aligned} & 681,176 \mathrm{~kg} \\ & \text { S: } \mathbf{8 8 , 8 7 6} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 90,828 yen } \\ & \text { S: 27,121 yen } \end{aligned}$	$\begin{aligned} & \hline 384,011 \mathrm{~kg} \\ & \mathrm{~S}:--- \end{aligned}$	$\begin{aligned} & \text { 381,377 yen } \\ & \text { S: --- } \end{aligned}$
1938	$\begin{aligned} & \hline 8 \\ & \text { S: } 2 \end{aligned}$	$\begin{aligned} & 270,899 \mathrm{~kg} \\ & \text { S: } \mathbf{3 3 , 9 2 0} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & \text { 42,934 yen } \\ & \text { S: } \mathbf{1 1 , 7 8 6} \text { yen } \end{aligned}$	$\begin{aligned} & \hline 49,127 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{6 7 5} \mathrm{kg} \end{aligned}$	$\begin{aligned} & \hline 41,634 \text { yen } \\ & \text { S: } \mathbf{6 0 8} \text { yen } \end{aligned}$
1939	Japan: 40 Ships (120 tons), South Sea Islands: 10 Ships (20 tons)*	$\begin{aligned} & \text { Japan \& SSI } \\ & 41,400,000 \mathrm{~kg}^{*} \\ & \text { SSI: } 551,250 \mathrm{~kg}^{*} \\ & \text { SSI: } 361.530 \mathrm{~kg}^{* *} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Japan \& SSI } \\ & \text { 16,560,000 yen* } \\ & \text { SSI: } 98,500 \text { yen* } \\ & \text { SSI: } 93,043 \text { yen** } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SSI: 54,831 } \\ & \text { kg** } \end{aligned}$	$\begin{aligned} & \text { SSI: } 66.777 \\ & \text { yen** } \end{aligned}$
1940	$\begin{aligned} & \hline 23 \\ & \text { S: } 2 \end{aligned}$	$\begin{aligned} & \hline \text { Japan \& SSI: } \\ & 64,875,000 \mathrm{~kg}^{*} \\ & \text { SSI: } 858,793 \mathrm{~kg} \\ & \text { S: 84,506 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Japan \& SSI: } \\ & \text { 25,950,000 yen* } \\ & \text { SSI: 306,126 yen } \\ & \text { S: 34,787 yen } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 85,496 \mathrm{~kg} \\ & \mathrm{~S}: \mathbf{1 0 1} \mathbf{~ k g} \end{aligned}$	$\begin{aligned} & 119,140 \text { yen } \\ & \text { S: } \mathbf{2 8 4} \text { yen } \end{aligned}$
1941***	$\begin{aligned} & 21 \\ & \text { S: } 2 \end{aligned}$	$\begin{aligned} & 1,023,093 \mathrm{~kg} \\ & \text { S: } \mathbf{3 3 , 6 6 9 \mathrm { kg }} \\ & \hline \end{aligned}$	$\begin{aligned} & 315,705 \text { yen } \\ & \text { S: } \mathbf{1 9 , 9 1 3} \text { yen } \\ & \hline \end{aligned}$	$66,719 \mathrm{~kg}$ S: ---	$\begin{aligned} & \text { 129,882 yen } \\ & \text { S: --- } \end{aligned}$

SSI: South Sea Islands
Sources: 1922-1932 statistics: Nan'yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1934), pp. 348-355; 1933 statistics: Nan’yôchô, Daisankai, Nan'yôchô tôkei nenkan (Palau: Nan’yôchô, 1935), p. 125-126.
1934-1942 statistics for tuna fishery permits: Nan'yôchô, Nan'yô Guntô yôran, 1934-1942.
1934-1937 statistics for fisheries except for tuna fishery permits: Nan'yôchô, Nan'yôchô Suisan Shinkenjô yôran (Palau: Nan'yôchô Suisan Shikenjô, 1938), pp. 42-58.
1938, 1940, and 1941 statistics: Nanyôchô, Nan'yô Guntô yôran, 1938, 1940, and 1941.
*1939 statistics: "Takumu daijin seigi Nanyôchô Suisan Shikenjô kansei chû kaisei ni kansuru ken" October 1, 1940.
**1939 statistics: Ôkurashô Kanrikyoku, Nihonjin no kaigai katsudô ni kansuru rekishiteki chôsa: Tsûkan dai
nijûissatsu Nanyô Guntô hen daini bunsatsu: Dainibu Nan'yô Guntô keizai sangyô, 1949, p. 86-87, and pp. 147-148.

* 1940 statistics: "Takumu daijin seigi Nanyôchô Suisan Shikenjô kansei chû kaisei ni kansuru ken" October 1, 1940.
*** All statistics for tuna fishery for 1941 and 1942, printed in 1942 and 1943 editions of Nan'yô Guntô yôran, respectively, are identical. The statistics for 1941 are used in this table.

Source: See Table 5 and Table 6.

War and Fishery: 1941-1944

Because of the long-term Japan-China War that began in 1937, the Japanese government tightened material controls starting in late 1939. This caused a shortage of fuel and supplies for some fisheries. In particular, the shortage of fiber nets and line was serious. After the Pacific War broke out in December 1941, fishing vessels, along with their crews, were gradually requisitioned for military service. As of 1942, Nankô Suisan had offices in Tokyo, Saipan, Chuuk, Pohnpei, Kosrae, Jaluit, Dalian (China), Yaizu, and Okinawa. There were also offices at Guam, Ambon, Rabaul, Kavieng (New Ireland), and Manila - areas that Japanese forces had taken. However, because of the war, Japan’s commercial fishing activities in the South Sea Islands declined.

After the outbreak of war with the U.S., the Nankô Suisan Saipan ice plant and cold storage facility were taken over by the Japanese Navy. All fresh and semi-processed bonito were distributed for military use. Dried bonito was also supplied to the military. In June 1942, 8,000 dried bonitos - emergency food for 4,000 military personnel were distributed to the Japanese troops on Saipan. Some 10,000 additional Japanese army troops were landed on Saipan and Tinian after March 1944, and the factories and attached buildings of Nankô Suisan in Garapan were taken over completely by the military. The company employees, except for those engaged in fishing, were mobilized for construction work on airfields and fortifications, and fishing activities in the Mariana Islands ended completely when U.S. forces approached the islands in mid-1944.

Guam, a U.S. territory in the Mariana Islands since 1898, was occupied by Japan on December 10, 1941. According to Japanese Navy orders, Nankô Suisan’s Saipan office established its Ômiya (Guam) Branch Office in Agana. Two bonito pole-and-line
vessels from Saipan started fishing off Guam and supported the military's selfsufficiency efforts on the island. These vessels were later used to patrol around the island in anticipation of a U.S. attack, and fishing activities were dramatically reduced. The following is a summary of the Japanese Navy's Civil Administration Department report on Nan'kô Suisan's fishing on Guam between 1942 and 1943:
> "The company began bonito fishing with two 21-ton ships southwest of Matsuyama (Merizo), in the southern part of the island, and between Guam and Rota. A dried bonito factory was built to process $60 \mathrm{kan}(225 \mathrm{~kg}$) of bonito per month, but the result was disappointing, with 'no hope of increasing production' because of an unfavorable period of migratory fish, and few schools of baitfish in the Guam and Saipan areas. Large catches were not expected because of the influence of seasonal winds and rough waters. The catch for 1942 was $82,170 \mathrm{~kg}$ of bonito and $7,230 \mathrm{~kg}$ of other types of fish, totalling $89,400 \mathrm{~kg}$. There was no catch of other fish in July, October, and December. Since no bonito was caught between January and April, and between June and July 1943, the total fell to $7,340 \mathrm{~kg}$ for that year. Other fish catches also decreased to $45,465 \mathrm{~kg}$. After the Daini Tôkaimaru, a cargo-passenger ship and a commercial cruiser, was sunk in Apra Harbor in January 1943, the fisheries rapidly declined." ${ }^{17}$

Conclusion

During the Experimentation Period, 1922-1931, fishing permits, total fish catches, including bonito catches, in the South Seas Islands increased markedly during the 1920s and early 1930s (Table 1-3). As well, the Saipan district went through an historic change in 1930 and 1931. The Saipan district caught a large percentage of bonito (20% in 1931, 27% in 1932 and 26% in 1933) in the South Sea Islands, even though the seas around Saipan were regarded as poor fishing grounds. This increase in bonito catches resulted from the introduction of motorized vessels and increased Japanese government support (Table 2-3).

From 1931-1941, the government's national fisheries policy was directed at increasing the amount of fish caught and processed for consumption in Japan and China. Catches of bonito rose markedly in the 1930s, but the Saipan district's contribution actually declined percentagewise (Table 5 and Graph 2). This shows that the fishing grounds expanded in both the South Sea Islands and further south to newly occupied areas.

In the period from 1941 to 1942, fisheries in the South Sea Islands collapsed due to the Pacific War. Fisheries in the Saipan district were no exception.

In conclusion, it should be pointed out that from the 1930s through to the 1940s, the fisheries in the South Sea Islands were influenced not only by the coming of war, but by Japanese government policy, both in terms of financial assistance and administrative policy.

[^15]
[^0]: HH H

[^1]:

[^2]: ォ思HH

[^3]:

[^4]:

[^5]: ${ }^{1}$ Okamoto Hiroaki, "Taiheiyô sensô izen oyobi shûsen chokugo no Nihon no maguro gyogyô dêta no tansaku (Search for the Japanese Tuna Fishing Data Before and Just After World War II)," Suisan Sôgô Kenkyûjo Sentâ Kenkyû Hôkoku 13 (Shizuoka: Suisan Sôgô Kenkyû Sentâ, 2004): 18.

[^6]: ${ }^{2}$ Marukawa Hisatoshi, "Nan'yô Guntô no suisan (2)" Nan'yô Suisan 5, no. 3 (March 1939): 8.

[^7]: ${ }^{3}$ Marukawa Hisatoshi, ibid., p. 12.
 ${ }^{4}$ Marukawa Hisatoshi, "Nan’yô Guntô no suisan (4)" Nan'yô Suisan 5, no. 5 (May 1939): 4-9.
 ${ }^{5}$ The total Japanese population in the South Sea Islands in 1929 was 16,202 (male: 10,291, and female: 5,911). Of them, 8,289 were from Okinawa - 51\%. 7,754 Okinawans (94%) lived on the Saipan District, while 347 Okinawan (4\%) lived on the Palau District. Nan’yôchô, Nan'yôchô tôkei nenkan (Palau: Nan’yôchô, December 1934), pp. 34-39.
 ${ }^{6}$ Nan'yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1934), p. 54.

[^8]: ${ }^{7}$ Nan'yôchô, Nan'yôcho Suisan Shikenjô yôran (Palau: Nan'yôchô, December 1938), p. 35.
 ${ }^{8}$ Nan'yôchô, "Takumu daijin seigi Nan'yôchô bunai rinji shokuin secchi sei chû kaisei no ken," April 18, 1935.

[^9]: Source: 1928-1932 Statistics: Nan’yôchô, Dainikai, Nan'yôchô tôkei nenkan (Palau: Nan'yôchô, 1934), p. 349; and 1933 Statistics: Nan’yôchô, Daisankai, Nan'yôchô tôkei nenkan (Palau: Nan’yôchô, 1935), p. 126

 * Some of these statistics are not consistent with the grand total in Table 3.

[^10]: ${ }^{9}$ Nan’kô Suinsan Kabushiki Kaisha, Nan’kô Suisan Kabushiki Kaisha gaiyô, October 1942, p. 6.
 ${ }^{10}$ Gotô Ken’ichi, "Gyôgyô, nanshin, Okinawa," in Iwanami kôza: Kindai Nihon to shokuminchi 3, Shokuminchika to sangyôka (Tokyo: Iwanami Shoten, 1993), pp. 166-167.

[^11]: ${ }^{11}$ Marukawa Hisatoshi, "Nan’yô Guntô no suisan (2)" Nan’yô Suisan 5, no. 3 (March 1939): 12-13.

[^12]: ${ }^{12}$ Kawakami Zenkurô, Nankô Suisan no ashiato (Tokyo: Nankô Suisan, 1995), p. 284.
 ${ }^{13}$ Nan'kô Suisan Kabushiki Kaisha, Nan'kô Suisan Kabushiki Kaisha gaiyô, pp. 6-7.

[^13]: ${ }^{14}$ Dômei Tsûshinsha, Sekai no umi ni: Katsuo maguro gyogyô no subete (Tokyo: Dômei Tsûshinsha, 1974), p. 35.
 ${ }^{15}$ Nan'yôchô, "Takumu daijin seigi Nan'yôchô bunai rinji shokuin secchi sei chû kaisei no ken" October 1, 1940.

[^14]: ${ }^{16}$ Ibid.

[^15]: ${ }^{17}$ Sanbô Honbu, Ômiyatô heiyô chishi shiryô, 1944, p. 60.

