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ABSTRACT iii 

An abundance of new data for the Necker Ridge area 

have been collected and presented in the form of bathy

met ric and free-air anomaly contour maps as well as a 

series of profiles projected perpendicular to the ridge. 

The sediment thickness is determined for three of these 

profiles and a density profiling technique is used t~. de

termine an average density for the ridge of 2.4 gm/cc. 

Calculations are made of lithospheric deflections due to 

loading by the Necker Ridge, where the lithosphere is 

modeled as a continuous as well as a fractured elastic 

plate • These models are employed for ~ number of differ-

ent effective flexural rigidities where the corresponding 

gravity effect of the models is used as a control to be 

compared to the observed free-air anomalies. The results 

show that for the continuous' plate model a rigidity of 

(4.33 + 2~08) x 10 28 dyne-cm is required, whereas for 

the fractured plate model a rigidity of (2.0 + 1.0) x io 29 

dyne-cm is required. These rigidities are quite low and 

correspond to plate thicknesses of 7.86 km and 13.1 km 

respectively. On the other hand, if the lithosphere is 

considered a viscoelastic plate and modeled as a continuous 

elastic plate, the required thickness is in the range 

40-70 km, and when modeled as a fractured elastic plate, 

it is in the range 20-35 km. Seismic evidence indicates 
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iv 
that the 40-70 km range is quite reasonable, suggesting that 

the lithosphere can be modeled as the continuous visco-

elastic plate described using continuous elastic plate 

theory. Using these results, data from a study by Watts 

and Cochran are reinterpreted and indicate that the litho-

sphere thickens with age along the Hawaiian-Emperor Sea-

mount Chain • 
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INTRODUCTION 

The concept of plate tectonics is based on the idea 

that the outer portion of the Earth consists of a rigid 

outer layer (lithosphere) overlying a weak substratum 

(asthenosphere). The existence of this kirid of struc-

ture was first discussed by Barrell (19i4a, 1914b, 1915) and 

has since become widely accepted • 

In studies concerning the res~onse of the lithosphere 

to various applied loads, it has been found that the litho-

sphere can be modeled as a body of finite strength. Fur-

thermore, studies on the variation of seismic wave velo-

cities and attenuation have shown that for loading times 

greater than 10 6 years, the asthenosph~re can be modeled 

as a dense fluid (Walcott, 1976). In studying this prob-

lem, early researchers such as Gunn (1943a, 1943b, 1947, 

1949), Vening-Meinesz (1941), Heiskanen and Vening-Meinesz 

' (1958) and Jeffreys (1959) all considered the lithosphere 

as an elastic plate overlying a weak fluid. It was through 

these studies, which used either elastic beam or thin 

plate theory, that this method was found to work quite well. 

Later studies such as those by Walcott (1970a, 1970b, 1970c, 

1972, 1976) investigated the response of the lithosphere 

due to applied loads which had existed for long periods 

of time. In his studies, he concludes that as the load 

gets older, the lithosphere responds viscoelastically 

rather than elastically and has a time constant on the or-
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der of 10 5 years. In this manner, the rigidity of the 

lithosphere will seem to decrease rather than remaining 

constant as time increases. 

More recently, studies have been made by Cochran 

(1973), Watts and Talwani (1974), Watts and Cochran 

(1974) and Watts, Cochran and Selzer (1975) who examined 

the characteristic features of lithospheric response to 

applied loads. In these studies, both two- and three

dimensional deflection models hav~ been made, ail of which 

have produced quite good results. The study made by 

Watts and Cochran (1974) showed that for a large feature, 

such as the Hawaiian-Emperor seamount chain, the effective 

flexural rigidity, 'after some given t~me, seems to reach 

a finite, nearly constant value when the lithosphere is 

assumed to be of constant thickness. In all of these 

studies, the parameter which is of greatest interest is 

the effective flexural rigi4ity which represents a mea

sure of the resistance of the lithosphere to deformation. 

The feature · of interest in this study is the Necker 

Ridge which lies perpendicular to the Hawaiian Chain at 

approximately 22°N latitude and 167°W longitude. The 

purpose of this study is to (1) construct a bathymetric 

as well as a gravity contour map utilizing the abundance 

of new data available, and (2) to learn how the litho

sphere responds to a small two-dimensional load both 

elastically and viscoelastically • 
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DATA REDUCTION 

Gravity and Bathymetry 

The gravity and bathymetry data used for this study 

were obtained from surface-ship measurements made on the 

University of Hawaii vessel Kana Keoki between 1971 and 

1975 as well as one cruise of the OSS Pioneer (U.S. Dept. 

of Commerce, 1964). A summary of particular cruise legs 

with their corresponding navigation and instrumentation, 

is given in Table 1. 

From Table 1 we can see that all of the Kana Keoki 

cruises used the same gravimeter system, that being a 

LaCoste and Romberg air-sea gravimeter (S-33) mounted on 

a LaCoste and Romberg gyro-stabilized p~atform. For all 

of these cruises, satellite navigation was used and very 

accurate position fixes were obtained. Furthermore, to 

obtain a high accuracy, cross-coupling corrections were 

made yielding an accuracy f oD all of the data in the range 

of 2-4 mgal. 

The data used from the OSS Pioneer were obtained with 

a LaCoste and Romberg air-sea gravimeter (S-11) mounted 

on a gimbal suspension. The observers estimated the accu-

racy as 12-15 mgal (U.S. Dept. of Commerce, 1964), where 

the navigation used was based on celestial fixes instead 

of satellite navigation. Because of this, as well as for 

reasons related to possible gimbal suspension meter errors 
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TABLE l 

CRUISE IDENTIFICATION, NAVIGATION AND INSTRUMENTATION 

CRUISE AND LEG PROFILE 
SHIP YEAR IDENTX FI CAT ION NUMBER NAVIGATION GRAVIMETER SUSPENSION 

KANA KEOKI 1975 75072600 1 SATELLITE L&R S-33 L&R GYROSTA-
BILIZED 
PLATFORM 

OSS PIONEER 1964 IIOE~'t-OPR442 2 CELESTIAL L&R S-11 GIMBAL SUS-
PENSION 

KANA KEOKI 1972 72070201 3 SATELLITE L&R S-33 L&R GYROSTA-
"· BILIZED 

PLATFORM 

KANA KEOKI 1971 71042601 4 SATELLITE L&R S-33 L&R GYROSTA-
BILIZED 
PLATFORM . 

KAN.I\ KEOKI 1973 73102500 5 SATELLITE L&R S-33 L&R GYROSTA-
BILIZED 
PLATFORM 

*IIOE = INTERNATIONAL INDIAN OCEAN EXPEDITION 

~ 
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regarding sea state, it is felt that the above estimated 

accuracy is a valid one. 

In reduction of the data to usable form, the bathy

metry was converted to corrected meters using the velocity 

of sound in water as given in Matthews tables (1939). 

5 

The gravity data used were in the form of free-air anomalies 

(FAA). These had been calculated Telative to the Potsdam 

system, using the International Gravity Formula adopted in 

1924 by the International Union of Geodesy and Geophysics. 

The above data are presented in two forms: the first 

being bottom contour charts and the second being selected 

profiles. The control for the contour charts is shown in 

Figure 2 where it can be seen that ther~ is a sparsity of 

bathymetric control in the southwest portion of the area and 

an overall sparsity of gravity control throughout the south-

ern half of the area • The contour intervals for the charts 

were chosen as 100 m for the,bathymetry to show the region

al detail (Figure 3), and 25 mgal for the gravity (Figure 

4). Control for the southwest portion of the bathymetry 

was taken from charts published by Chase, et al. (1970). 

The particular profiles chosen were those relatively 

perpendicular to the Necker Ridge • These were then pro-

jected perpendicular to the r~dge as shown in Figure 1 

and plotted as shown in Figure 5. From Figure 1 it can 

be seen that profiles 1, 2, 4 and 5 are all at approx~mate

ly the same areal direction orientation and are relatively 
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Figure 1. Location of selected profiles used for this 

study across the Necker Ridge. Bathymetry is 

at 200 fm intervals, from Chase et al. (1970). 
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Figure 2. Ship tracks used to construct the bathymetry 

and gravity contour maps (Figures 3 and 

4) for the Necker Ridge area. The solid 

lines represent gravity control while all 

of the lines represent bathymetry control. 
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Figure 3. Bathymetry of the Necker Ridge with a contour 

interval of 100 min the flatter areas. Con

trol for the southwest portion of the map 

was based on Chase et al. (19 70). 
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Figure 4. Free-air anomaly map of the Necker Ridge area 

with a contour interval of 2Y mgal, 
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Figure S. Observed topography and observed free-air 

anomaly for the profiles chosen (see Figure 

1). All the profiles shown represent pro-

jected profiles running perpendicular to the 

trend of the Necker Ridge where the gravity 

profiles were reduced using the- International 

Gravity Formula adopted in 19240 
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parallel to the Hawaiian Chain, while profile 3 is at a 

totally different azimuth running more nearly perpendicular 

to the Hawaiian Chain. For this reason, the west end of 

gravity profile 3 is more negative than the rest since in 

• approaching the Hawaiian Chain it enters the negative FAA 

belt which flanks the entire Hawaiian Chain (Watts and 

Cochran, 1974). Other than this, all of the gravity pro-

• files are quite similar with a negative FAA belt flanking 

either side of the ridge and an average anomaly amµlitude 

on the order of 40 mgal. The positive anomalies all cor-

• respond closely with topography, and reach a maximum value 

of about 100 mgal. 

• Sediment Thickness and Density Determination 

In determining the thickness of the sediment in a 

given area, the reflection seismic record is needed in 

order to obtain the one way travel time, and an interval 
' 

velocity for the sediment is required. For this study, 

of the five profiles considered, seismic reflection re-

• cords were available for only three of them,~., pro-

files 1, 3 and 5, and, due to a lack of dependable near-

surface refraction data, the sediment interval velocity 

• was unknown. 

To determine the interval velocity, there are three 

primary methods used (Hamilton, et al., 1974): (1) assume 

• an interval velocity for the sediment, (2) use an equation 

• 
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oi curve calculated for a similar area, or (3) use a pre-

• dieted initial velocity for the surface of the sediments, 

v0 , and a corresponding velocity gradient. 

Since sediment velocity generally increases with 

• depth of burial, it is obvious that the average velocity 

of the sediment will increase with sediment thickness. 

For this reason, an overall interval velocity should not 

• be used over all areas, but rather should be averaged in-

dependently for different sediment wedges dependent on 

their relative thickness. 

• In this study, method (3) above was used to calculate 

the thickness and interval velocity of each reflection 

point picked • These interval velocities were then averaged 

• over each sediment wedge to obtain an average interval 

velocity from which the average density could be obtained 

for the sediment wedges. 

• Houtz and Ewing (1963) de,termined an empirical formula 

for the variation of sound velocity in sediments given by 

•• v v0 + ah , 

where v0 represents the velocity at the l~quid sediment 

• interface, a is the average velocity gradient dependent 

on time, and h is the thickness of the layer. Solving 

this for h gives 

• h = v0 (exp(at) - l)/a 

v 0 t + (av0 )t 2 /2 + (a2v 0 )t 3 /6 + • 

• 
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where for small one-way reflection time t, this can be 

• approximated by 

and from this, we get for the velocity at a depth h 

• 
v = Vo + (aVO)t • 

The average value for v0 used here was 1.52 km/sec 

• (Hamilton, 1970, 1971, 1973; Hamilton, et al., 1974; Houtz, 

et al., 1968, 1970), and for a, we used the relation given 

by Hamilton, et al. (1974) which represents a polynomial 

• regression of data obtained over 13 areas covering a 

region extending from the Northern Pacific to the Indian 

0 ce an • The relation is given by 

• a= 1.318 - l.4632t + 0.7135t
2 

Next, to obtain an empirical way to determine the density, 

the density-velocity curve presented by Ludwig, et al. 

•• i 
(1968) was digitized and a polynomial regression was run 

on it yielding the relation given in Table 2, accurate to 

0.01 gm/cc. This relation is plotted in Figure 6, from 

• which the sediment density was determined using the above 

calculated average interval velocity. The average velocity, 

density and thickness vs. one-way reflection time are 

• plotted in Figures 7, 8 and 9 respectively • 

• 

• 
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Tab le 2 

Empirical density-velocity 
relationship with p in gm/cc and 

V in km/sec 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 

8 

p = l: an v 
n=O 

n 

a 
n 

-2.724942402967010 
6.479501873911820 

-3.861248058096400 
1.320642304407480 

-0.274000161856168 
0.034996857680028 

-0.002672295209909 
o.too11157458979B 

-0.000001956917160 

19 
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Figure 6. Empirical Ludwig et al. (1968) density-

velocity curve shown as an ath degree 

polynomial regression fit, accurate to 0.01 

gm/cc. 
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Figures 7 and 8. 
The average interval velocity and aver-

age density vs. one-way travel time assuming 

an initial velocity at the surface of l.?2 

km/sec and a velocity gradient dependent 

on the travel time. 
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Figure 9. Sediment thickness vs. one-way travel time, 

assuming an initial velocity at the surface 

of 1.52 km/sec and a velocity gradient de

pendent on the travel time~ 
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Using the calculated sediment thicknesses and average 

• density, a Talwani two-dimensional program was used (Tal-

wani, 1959) to remove the attraction of the sediment from 

the observed free-air anomaly. The corrected topography 

• and free-air anomaly are plotted in Figure 10. 

Finally, to determine the average density of the load 

material, a marine equivalent of the Nettleton (1939) 

• "density profile" was determined for the profiles across 

the ridge. For the marine situation, this involved correc-

ting the free-air gravity anomaly profiles on a two-dimen-

• sional basis for the gravity effect of the ridge, assuming 

a series of different densities contrasted with that of 
. 

water • The corrected anomaly which showed the least cor-

• relation with the topography was then adopted as the one 

characterizing the true density and is termed here as the 

"Complete Free-Air Anomaly". This anomaly, for the marine 

• ; 
case, represents the direct equivalent of the "Complete 

Bouguer Anomaly" implied in the Nettleton "density profile" 

method of determining the density of a non-marine topo-

•• graphic feature. 

Since sediment calculations could not be made on all 

of the profiles, a marine density profile was run on the 

• data both before and after removal of the sediment effect 

in order to see how the sediment layer would affect it. 

These results are shown in Figures 11 and 12. From Figure 

• 11 (before the sediment correction) the average load density 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

seems to lie in the range 2 . 4-2.5 gm/cc, whereas from 

Figure 12 (after correcting for the sediment) the den

sity seems to lie closer to 2.4 gm/cc. Thus, for this 

study, a load density of 2.4 gm/cc was used for the de

flection models • 

27 
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Figure 10. Basement topography, representing the observed 

topography minus the sediment layer, with 

its corresponding free-air anomaly corrected 

for the gravitational attraction of the 

sediment layer. 
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Figure 11. Marine density profiles of the observed free

air anomalies utilizing the observed topo

graphy for profiles 1, 2, 3, 4 and s. These 

curves represent "Complete Free.,...Air Anomalies". 
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Fig~re 11. (Continued) Marine density profiles of the 

observed free-air anomalies utilizing the 

observed topography for profiles 1, 2, 3, 

4 and 5. These curves represent "Complete 

Free-Air Anomalies". 
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Figure 12. Marine density profiles of the corrected 

free-air anomalies utilizing the basement 

topography for profiles 1, 3 and 5. These 

curves represent "Complete Free-A:Lr Anomalies". 
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THEORY FOR THE DEFLECTION OF A LOADED LITHOSP HERE 

• 
Elastic Model 

Here we will consider the lithosphere as an elastic 

• plate overlying an asthenosphere of negligible strength 

subjected to a two-dimensional load. The differential 

equation governing the deflection is (see Append i x) 

• p (1) 

where p is an applied two-dimensional l-ine load 

•• g is the acceleration of gravity 

p 2 is the density of the material infilling the 
deflection 

p 3 is the density of the materiAl underly:irng the 

• sheet 

w is the deflection 

x is the horizontal distance from the point at 
which the load is applied 

• D is the effective f'iexural rigidity of the plate 
defined as 

D = EH 3 /[12(1 - a 2)] (2) 

• 
where E is Young's Modulus 

a is Poisson's ratio 

• H is the effective thickness of the plate. 

In order to solve this we will first find the homo-

geneous solution and then a. particular solution depending 

• on the model chosen. Thus, to obtain the homogeneous 

/ 

•• 
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solution, we let P 0 and solve the above Equation 1 

• to give 

• where ( 3) 

and z1 , z2 , z3 and Z4 are constants of integration. 

Considering the plate to be very large, it is a 

• reasonable assumption that at a large distance from the 
.· 

application of the load, the deflection approaches zero. 

Thus, we can let z1 = z2 = O. 

·• We can then find a relationship between the remaining 

constants by considering the symmetry about the point at 

which the load is applied. That is, that the slope of 

• th e deflection will be zero at .x = 0 giving z3 = z4 = C, 

yi elding finally 

• w = C e-Ax (cosAx + sinAx) • 
' 

( 4) 

Next, consider the particular case of an applied line 

load P on the plate (Hetenyi, 1946). In order to have 

• stability, the load P will have to be in equilibrium with 

t h e buoyancy forces ( p3 - p2 )gw, which leads to the 

conditional equation 

• 00 

f _
00 

( P
3 

- P
2

) gw dx = P, (5) 

or upon substitution of (4) into (5) gives 

• 

• 
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• 
or upon substitution of (4) into (5) gives 

• 
C = PA./f2( P 3 - p 2 )g] 

leading to the deflection equation 

w 
PA. -A.x 

2( p _ p )g e (cosA.x + sinA.x) 
3 2 

(6) 

• 
Since most of the loads observed in nature are those 

of distributed loads, it therefore is important to look 

• at the deflection of the lithosphere due to a distributed 

load in contrast to a line load. To do this, we consider 

the load as consisting of a series of thin, infinitely 

• narrow sections, each producing a concentrated downward 

force of P = p dx. The deflection dw for one such section 

can then be modeled using our previously defined relation 

• for a concentrated line load yielding: 

dw 
pA. -A.x 

e (cosA.x + sinAx) dx 

• from which we obtain the tocal deflection of our load 

both under and to the side of the load by integrating over 

the respective limits. 

• For a point under the load we get 

p -A.R -A.r 
[2 - e cosAR - e cosAr], ( 7) 

• for a point to the left · of the load we get 

p -A.R -Ar 
[e cosA.R - e cosA.r), . ( 8) 

• 

• 
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• 

• 

• 

and for a point to the right of the load we get, by 

symmetry 

(9) 

39 

where here R is the distance from the left end of the load 

to the point and r is the distance from the right end of 

the load to the point. 

A comparison of the deflection produced by a given 

load, modeled first as a line load and then as a distributed 

load is given in Figure 13. Here it - is seen that the line 

load approximation produces both larger amplitude as well 

as a shorter wavelength deflection in comparison to the 

distributed load. Thus to calculate the deformation more 

accurately, this study will consider the distributed load 

case, hereafter referred to as Model I. It should be 

noted here that for a small load such as the Necker Ridge, 

the two models actually produce quite similar results al

though for maximum accuracy, the distributed model is 

still used. 

A second model also considered in this study is that 

of a vertically fractured lithosphere (Model II). To 

summarize the method by which the deflection equation is 

derived it is convenient to consider first an infinite 

plate subjected to a line load at the origin. This load 

will produce, at the origin, a bending moment, M, and 

a shearing force, Q • Thus the removal of both M and Q 

would be the same as removing half the plate, creating a 
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Figure 13. Continuous elastic plate deflection due to 

a given load modeled as a line load and as 

a distributed load. 
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free end at the origin. This is done by applying simul-

• taneously a moment and force at the origin which produce 

a bending moment, -M, and a shearing force, -Q, (Hetenyi, 

1946). Then by placing two of these semi-infinite plates 

• together we obtain a model for an infinite plate fractured 

at the origin. We can further, by the principle of super-

position, add a distributed load to the plate from which 

• we obtain our def le c ti on equation • . 

In this study I have chosen the origin to coincide 

with the fracture, with the distance, x, measuring positive 

•• to the right, representing the distance from the origin 

to the point at which the deflection is to be calcul~ted. 

Thus for a load of width 1, a distance s from the origin 

• (always positive), the deflection is broken up into three 

cases : 

1) for a point to the left of the load 

• w p {[e-As(cosAs - 2 sinAs) + 
2( P3- P2 )g 

-A(s+1) 
e (2sinA(s+1) - cosA(s+1) )] 

• AX -AS . 
e- (cosAx + sinAx) + [e (3sinAs 

-A(s+1) cosAs) - e (3sinA(s+.Q.) - cosA(s+1) )] • (10) 

-Ax -A{s-x) -A(s+i-x) 
e sinAx + [e cosA(s-x) -e 

• cos A (s+1-x)] } 

2) for a point under the load 

w = p -As 
2( p

3
- p

2
)g { [e (cosAs-2sirtAs) + 

• e-A(s+.Q,)(2sinA(s+1) )] • 

• 
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e-A.x(cosA.x + sinA.x) + fe-A. 8 (3sinAs -

• cosA.s) - e-A.(s+i)(3sinA.(s+2) - cosA.(s+2) )] • 

-A.x -A(x-s) 
e sin Ax + [ ( 1 - e cos A. ( x- s) ) + 

( 11) 

-A.(s+2-x) , 
(1 - e cosA.(s+£-~) ) ] } 

• 3) for a point to the right of the load 

P { -As ---~).--- [e (cosAs-2sin/..s) + 
2(p3-P2 g 

w = 

-A.s+2) 
e (2sinA(s+2) - cosA(s+2) )] • 

• -Ax -/..s (12) e (cosAx + sin/..x) + [e (3sin/..s -

cosA.s) - e-/..(s+i)(3sinA.(s+£) - cosA.(s+2) )] • 

' '(x ) -1..(x-s-£) e-Axsin/..x - [e-A -s cos/..(x-s) - e 

•• cosA.(x-s-2) ] } 

These deflection equations are now in a convenient 

form which can be applied easily to any irregularly shaped 

• load. This is done by dividing the load up into a series 

of two-dimensional columns whose height, h, is measured from 

mean sea floor • The individual loads, p, are then calculated 

• using the relation 

(13) 

where here p 1 is the density of the load material and Po 

• is the density of the surrounding medium. Then to determine 

the total deflection, we sum all of the deflection curves 

due to each column using the principal of superposition 

• (Hetenyi, 1946). 

In Figure 14 the deflection curves for the assumed 

load shown are plotted for the parameters listed below in 

• Table 3 • 

• 
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• 

• 

• 

• 

• 

Table 3 

Assumed parameters for 
Models I and II (Figure 14) 

Po 1.03 gm/cc 

P1 = 2.40 gm/cc 

Pz 2.40 gm/cc 

P3 = 3.40 gm/cc 

-2 g = 980 cm sec 

D = 2 1029 dyne-cm 

A 
-7 

I 1.87 10 cm 

The load here represents a two-dimensional ridge 

broken up into 16 sections, each 2 km wide, reaching a 

maximum height of 3 km. The density of the load was 

44 

assumed to be 2.4 gm/cc as discussed earlier, while the 

density of the material infilling the deflection is assumed 

to be the same as the load. For the substratum the assumed . ' 
density of 3.4 gm/cc represents an average density similar 

to that used by Vening-Meinesz (1941), Walcott (1970c), 

and Watts and Cochran (1974) • 

• Another parameter which can be looked at is the effec-

tive thickness of the plate H, which can be found from 

• the definition of the flexural rigidity giving 

H [ 12 D (1 - cr 2 ) I EJ
113 

, (14) 

• 

• 
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Figure 14~ Deflection curves for two simple models; 

Model I being a continuous elastic litho

sphere and Model II being a fractured elastic 

lithosphere. The load represents a two-

dimensional distributed load as shown, with 

the model parameters given in Table 3. 
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where for the above model • 

we have 

D = 2 10
29 

dyne-cm 

E = 10
12 

dyne cm- 2 

(J = 0.25 

H = 13.1 km • 

It should be noted here that this thickness represents 

only an effective thickness and may not correspond to the 

true thickness of the plate. 

Viscoelastic Model 

Here we consider the lithosphere as a viscoelastic 

body instead of an elastic one which, as before, overlies 

a weak asthenosphere (Walcott, 1970a; Watts and Cochran, 

1974). An important aspect of a viscoelastic bofty is 

that when subjected to a constant load, it initially 

responds as an elastic body followed by a slow viscous 

flow. Thus if we were to describe this physical model 

using the previously derived equation for an elastic 

lithosphere, then as the age of loading increases, the 

effective flexural rigidity needed to match the true 

deform~tion ~would have to decrease. 

The equation governing the deflection in this case, 

for a viscoelastic plate overlying a weak fluid is 

(Nadai, 1963) 

40 
d w 

DO 4 dx 

0 p 
+ ( p + (15) 

where w, x, p 2 , p
3

, g and P are defined the same as for 

47 
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Equation 1. n
0 

represents the instantaneous effective 

flexural rigidity (Watts and Cochran, 1974). The dot 

represents the first derivative with respect to time 

and T represents the relaxation time defined as 

T = 3n ( 1 - a 2) I E , 

wherB T) is the effective viscosity of the plate. 

As before, in order to solve this we first consider 

just the homogeneous equation which is obtained by letting 
0 

p = p = o. Then our solution is of the form 

(16) 

w = 

where z1 , z2 , z3 and z4 are constants of integration, y is 

a constant derived from the separation of variables and 

T 
0 

= T[(.~.) 4 
- 1) , 

A 

where A is the same as in Equation 3o 

If we then assume the same boundary conditions as 

before we have 

1) as x -+ co w -+ 0 zl Zz 0 , => = , 

2) [dw] = 0 => z3 Z4 VO dx = = . 
x=O 

Thus our deflection equation now becomes 

w = V e-yx(cosyx + sinyx) ( 17) 

where V = v
0
exp(t/T

0
) represents the maximum deflection 

of the plate at x = O • This has been solved by Na dai 

(1963) for an applied line Ioad P. The solution obtained 

48 
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assumes that the plate is initially subjected to the load 

• P very rapidly such that its initial response is purely 

el a stic producing a deflectiori w
0 

governed by Equation 6 

-Ax ) e (cosAx + sinAx , 

• 
followed after a time, t, given by 

t ( 18) 

• 
by the deflection 

p 1 -Ax -yx ) [ (e cosAx - e cosyx 

• x 
(x-:/0) 

-Ax y , 
-Ae (cosAx + sinAx) ln(_)] 

(19) 

A 

[ (~) - 1 - ln (y) ] 
>.. >.. 

(x=O) • v 

where, in general, we define the total deflection as 

• ' 

{ wo + w (x =f O) 
w = (20) 

[wolx=O + v (x = 0) 

• To compute the above line load it is convenient to 

use the equation 

p = g(p1-Po) ( (B - A) c + 2AC) (21) 

• -where A rep res en ts the half width of the load at its top, 

• 

• 
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B represents the half width of the load at its base and 

C represents the height of the load • 

To see how Equation 20 varies with time, it .has been 

plotted in Figure 15 for various values of t/~ and the 

parameters listed in Table 4. These curves are plotted 

such that their amplitudes are normalized to the initial 

elastic deflection • 

From this 

amplitude 

Tab le 4 

Assumed parameters for 
Viscoelastic Model (Figure 15) 

Po = 1. 03 gm/cc 

pl 2.40 gm/cc 

p2 2. 40 gm/cc 

P3 3.40 gm/cc 

-2 
g = 9 80 cm sec 

DO 3. 8 1031 dyne-cm 
i 

A 2 km 

B 16 km 

c = 3 km 

plot it can be seen that as t 1-r. increases, the 

also increases while the wavelength decreases. 

Or, in effect, as the age of loading increases, both the 

50 

wavelength and amplitude of the anomalous free-air anomaly 

will tend to decrease. 

Gravity Effect of Models 

In calculating the gravity effect of the deflection 
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Figure 15. Deflection throughout time, of a continuous 

viscoelastic plate under a constant line load 

representing the average l~ad of the Necker 

Ridge. The deflection curves are all normalized 

to the initial elastic deflection, given 

by curve 1, where the assumed model parameters 

are given in Table 4. 
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models to compare them with those observed, we first found 

the effect of the load alone and then added on to this the 

effect due to the deflection. The gravity effect of the 

load was calculated using a Talwani two-dimensional program 

over the observed topography assuming a uniform density of 

2.4 gm/cc for the load material and ~ density of 1.03 gm/cc 

for the sea water. 

To calculate the total effect of the deflection, we 

considered all the crustil layers ~o be parallel down to 

the crust mantle boundary such that the effect is simply 

due to a contrast of 1.0 gm/cc where here we assumed a 

mantle density of 3.4 gm/cc. Then, since all the deflec-

tions considered here are of long wavelength on the order 
. 

of a hundred kilometers, it is a good approximation to 

calculate the gravity effect at the surface due to this 

deflection by the infinite flat slab equation (Walcott, 

1976) given by 

where w represents the displacement given by Equations 

7, 8, 10, 11 or 12 depending on the model and horizontal 

position being considered and g, p2 · and p
3 

are the same 

as defined earlier • 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

•• 

54 

APPLICATION OF METHOD AND RESULTS 

The application of this method to the Necker Ridge 

was done in the same manner as used by Watts and Cochran 

(1974) where the free~atr anomalies were used to determine 

the effective flexural rigidity. In this way, the errors 

involved when using topographic relief to match the flexure 

are eliminated since tectonic activity and erosion both 

can alter the sea floor • 

In determining the loads to be· used for mo de).ing the 

ridge, the observed topography was broken up into a number 

of columns as shown in Figure l~. Here the base line used 

represents the mean undisturbed sea floor for the adjacent 

area and the density of the load was t~ken in contrast to 

sea water • In calculating the load using the basement 

topography, the same scheme was used, as shown in Figure 

17, where here the base line represents the mean basement 

level for the adjacent area • . For this case, however, the 
~ 

most rigorous model would be to contrast the load density 

with sea water for that portion of the load projecting above 

the sea floor and contrast it with the sediment layer for 

that portion lying below the sea floor, within the sediments. 

In studying this model it was found that, for the size of 

load and thickness of sediment in this study, if we cal-

culate the entire load by contrasting its density with 

sea water instead of breaking it up into the above two 

cases the error involved reaches a maximum of only (3.23+0.78) 

mgal. Since this error is within the accuracy of the 
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Figure 16. Observed topographic profiles (including 

sediments) with their corresponding load 

configurations used in calculating the de

flection of the lithosphere. 
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Figure 17. Basement topographic profiles with their . 

corresponding load configurations used in 

calculating the deflection of the litho

sphere. 
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observed data, the loads here were calculated strictly in 

contrast to the sea water as with the observed topography 

case, thereby reducing the amount of modeling required • 

Then to obtain the total deflection, the deflection for 

each column was calculated and they were all summed using 

the principal of superposition as discussed earlier • 
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From the calculated deflection and observed topography, 

the corresponding gravity effect was computed and then com-

pared with the observed free~air anomaly. This method was 

repeated several times for a number of different values 

of the effective flexural rigidity for each profile using 

the densities given in Table 3. The effective flexural 

rigidity which fit best was defined as the one which pro

duced the minimum error between the calculated and observed 

free-air anomaly (hereafter called the best fit effective 

flexural rigidity). This error was defined as the square 

root of the average of the squares of the difference be

tween the computed and observed gravity yalues. 

In this study, deflection models were made for the 

data both before and after the sediment was corrected for 

in order to determine if it would have any effect on the 

determination of the best fit effective flexural rigidity. 

The computed gravity effect for those models fitting the 

data best are given in Figures 18 and 19 superposed on the 

observed gravity curves. The results show quite good cor-

relation with the observed data where, from the calculated 
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Figure 18. Theoretical gravity effect of the best fit 

effective flexural rigidity models superposed 

on the observed free-air anomalies for both 

the continuous plate model (Model I) and the 

fractured plate model (Model II). The flexural 

rigidities used here are given in Table 5. 
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Figure 19. Theoretical gravity effect of the best fit 

effective flexural rigidity models superposed 

on the corrected free-air anomalies (with the 

sediment effect removed). The flexural 

rigidities used here are given in Table 5. 
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TABLE 5 

SUMMARY OF BEST FIT PARAMETERS OBTAINED FOR A DENSITY OF 2.4 GM/CC 

MODEL I MODEL II 

PROFILE D x 10 28 DYNE-CM YMAX (KM) D x 10 28 DYNE-CM YMAX (KM) 

--
OBS CORR OBS CORR OBS CORR OBS CORR 

J. 2.0 2.0 0.92 1. 0 8 9.0 10.0 1. 66 1. 92 

2 1. 0 1.16 9.0 2. 35 

3 5.0 6. 0 .. , 0. 7 7 0.96 20.0 30.0 1. 58 1. 9 2 

4 5.0 1. 03 40.0 1. 70 

5 4.0 5.0 0.97 1.10 20.0 20.0 1. 40 1. 60 

AVERAGE 3.4 4.33 0.97 1 •. 0 5 19.6 20.0 1. 74 1. 81 

+1. 82 +2. 0 8 +0.14 +O. O 8 + 12. 6 6 +10.0 ±0.36 ±0.18 

D = BEST FIT EFFECTIVE FLEXURAL RIGIDITY OBS = OBSERVED DATA WITHOUT SEDIMENT 
REMOVED 

YMAX = MAXIMUM DEFLECTION CORR m OBSERVED DATA WITH SEDIMENT 
REMOVED 

()'\ 

~ 
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models, we can see that the best fit represents an average 

fit of both the amplitude and wavelength of the anomaly • 

In this way, the calculated models will more truly repre-

sent the overall subsurface structure instead of just a 

small portion of it • 

The major differences between the calculated and ob-

served anomalies lie in the areas of short-wavelength 

gravity variations. These variations in turn can be cor-

related •ith changes in topography ~hich flank t~e ridge, 

where, due to their being three-dimensional features, 

were not accounted for in the deflection equation. Profile 

3 has a further discrepancy which, as described earlier, 

represents a regional gradient due to its strike relative 

to that of the Hawaiian Ridge • 

A summary of the computed effective flexural rigidi-

ties used in Figures 18 and 19 is given in Table 5 where 

comparison of the models before and after the sediment 
; 

correction show an average increase in the best fit effec-

28 tive flexural rigi_dity of about 1x10 dyne-cm for both 

the continuous plate and fractured plate models. It can 

also be seen that the best fit effective flexural rigidity 

increases slightly from the northern profiles to those in 

the south with an average value over the entire ridge of 

28 (4.33 + 2.08) x 10 dyne-cm for the continuous model and 

29 
(2.0 + 1.0) x 10 dyne-cm for the fractured model. 

In order to determine how sensitive the computed 
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models are to a change in load densities the above procedure 

was repeated for a range of densities from 2.3 to 2.7 gm/cc • 

A summary of the best fit effective flexural rigidities 

is given in Table 6. Here it can be seen that a change in 

the load density by 0.2 gm/cc can change the effective 

flexural rigidity by as much as 20%. 

Other studies made in this area have also determined 

an effective flexural rigidity for the lithosphere. One 

study, by Watts and Cochran (1974) obtained an average 

effective flexural rigidity under the entire Hawaiian -

29 
Emperor Seamount Chain of 5 x 10 dyne-cm for the continuous 

30 model and 2 x 10 dyne-cm for the fractured model. Another 

study, by Walcott (1970a, 1976) found the effective flexural 

rigidity around the Island of Hawaii to be 7.6 x 10 29 dyne-cm 

31 
for the continuous model and 1.4 x 10 dyne-cm for the 

fractured model. Thus both of these studies have determined 

values an order of magnitude greater than those found in 

this study. Since a simple change in the load parameters 

cannot produce this kind of change, the lithosphere was 

next modeled as a viscoelastic body as described earlier • 

In using this model, a relaxation time of 10
5 

years 

was used as proposed by Walcott, with a Young's Modulus 

of E = 10 12 dyne cm- 2 and a Poisson's ratio of cr = 0.5 

producing an effective viscosity of the lithosphere of 

24 . n = 4.2 x 10 poise. For this study, we chose Poisson's 

ratio to be 0.5 so as to be the limiting case, due to the 
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TABLE 6 

BEST FIT EFFECTIVE FLEXURAL RIGIDITY FOR VARYING DENSITY 

DENSITY 
(GM/CC) 

PROFILE 

1 OBS 

1 CORR 

2 OBS 

3 OBS 

3 CORR 

4 OBS 

5 OBS 

5 CORR 

2.3 

2.0 

2.0 

2.0 

6.0 

7.0 

6.0 

5.0 

6.0 

MODEL I 
D x 10 2 8 DYNE-CM 

2.4 2.5 2.6 2. 7 

2.0 1. 0 0.9 0.8 

2.0 2.0 1. 0 0.9 

1. 0 0. 9 "· 0. 7 0.5 

5.0 4.0 4.0 3.0 

6.0 s.o s.o 4.0 

s.o 4.0 3.0 3.o· 

4.0 3.0 3.0 2.0 

5.0 4.0 4.0 3.0 

OBS = OBSERVED DATA WITHOUT SEDIMENT REMOVED 

CORR = OBSERVED DATA WITH SEDIMENT REMOVED 

MODEL II 

D x 10
28 

DYNE-CM 

2.3 2. 4 2.5 2.6 

10.0 9.0 7.0 6.0 

10.0 10.0 9.0 7.0 

10.0 9.0 7.0 s.o 

30.0 20.0 20.0 20.0 

40.0 30.0 30. 0 20. 0 

40.0 40.0 30.0 30.0 

20.0 20.0 10.0 10.0 

30. 0 20.0 20.0 10. 0 

• • 

2. 7 

5.0 

6.0 

4.0 

20.0 

20.0 

20.0 

8.0 

9.0 

°" -...J 
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assumed viscous properties of the lithosphere, although in 

reality it should be lower than this. The age of the Necker 

• Ridge has been found to lie between given limits, but no 

specific age has yet been determined. The minimum age 

has been found by Ozima to be at least 60 my using K-Ar 

• data (Clague, 1974) and the maximum age has been set at the 

age of the sea floor of 95 + 10 my (R. Moberly, pers. comm.). 

One dredging was taken in the area at latitude 23.6°N and 

• longitude 165.5°W which was found to be 77.6 + 1.7 my 

(Clague, 1974) using K-Ar dating. 

Next, in order to determine how the effective flexural 

• rigidity changes with respect to time, we need to match the 

viscoelastic deflection (Figure 15) assuming an elastic 

model • In doing this, our result will. depend on whether 

• the amplitude or wavelength is matched as well as on which 

of the two elastic models is used. 

For this study, we matched both the wavelength and 

• i 
the amplitude of the viscoelastic model, assuming first an 

elastic continuous plate model, and then an elastic frac-

tured plate model • 

• First, consider the viscoelastic deflections calcula-

ted earlier in Figure 15. Using an elastic continuous plate 

model, the deflections which match the viscoelastic wave-

• length are plotted in Figure 20 while those which match 

the amplitudes are plotted in Figure 21. Both sets of 

curves have been normalized to the initial elastic deflec-

• 

• 
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• 
Figure 20. Continuous elastic plate deflections which 

match the wavelengths produced by the same 

load when applied to a viscoelastic plate, • 
(Figure 15). 

• 

• 

• 

• Figure 21. Continuous elastic plate deflections which 

match the amplitudes produced by the same 

load when. applied to a viscoelastic plate 

(Figure 15). 
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• 
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ti on. It can be seen here that for the age of the Necker 

Ridge (60-95 my) the best overall fit will lie closer to 

the amplitude matched curves rather than the wavelength 

matched curves. 

In order to compare these predicted values for the 

effective flexural rigidity with those calculated earlier, 

a number of different matches of both the wavelength and 

amplitude were run by changing the instantaneous effective 

flexural rigidity, D0 • The values of Do chosen corresponded 

to effective plate thicknesses of 30-80 km and are plotted 

in Figures 22 through 27. In calculating these curves the 

same parameters were used as given in Table 4 with the only 

change being for the D0 term. 

Since the above curves represent how the predicted 

effective flexural rigidity will change with time only for 

the continuous elastic plate model, the same method was 

then applied matching the wavelengths and amplitudes using 
i 

a fractured elastic plate model. These curves are given 

in Figures 28 through 31 and cover a range of effective 

lithospheric thicknesses of 10-40 km • 

From the predicted curves, it can be seen that an 

effective thickness of between 40-70 km will explain the 

values determined for Model I (the continuous elastic 

plate) while an effective thickness of between 20-35 km 

is needed to explain those for Model II (the fractured 

elastic plate) • 
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Figure 22. Change in effective flexuial rigidity with 

time for a continuous viscoelastic plate of 

thickness 30 km modeled as a continuous elastic 

plate. The circle represents t h e average 

best fit effective flexural rigidity as 

found in thi~ study f o r a continuous plate 

model under the Necker Ridge. 
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• 

• 

• 
Figure 23. Same as Figure 22 for a thLckness of 40 km. 
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• 

• 

• 
Figure 24. Same as Figure 22 for a thickness of 50 km. 
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• 
Figure 25. Same as Figure 22 for a thickness of 60 km. 
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Figure 26. Same as Figure 22 for a thickness of 70 km. • 
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• 

• 
Figure 27. Same as Figure 22 for a thickness of 80 km. 
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Figure 28. Change in the effective flexural rigidity 

with time for a continuous viscoelastic 

plate of thickness 10 km modeled as a frac-

tured elastic plate. The square reµresents 

the average best fit effective flexural 

rigidity as found in this study for a frac

tured plate model under the Necker Ridge. 
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Figure 29. Same as Figure 28 for a thickness of 20 km. 
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• 

• 
Figure 30. Same as Figure 28 for a thickness of 30 km. 
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Figure 31. Same as Figure 28 for a thickness of 40 km. • 
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DISCUSSION 

To summarize our findings up to this point, we have 

shown the following: 

1) The average density of the Necker Ridge is about 
2.4 gm/cc. 

2) When modeling the lithosphere as an elastic plate, 
the best fit effective flexural rigidity is: 

a) : (4.33 2. 0 8) 
28 

for a continuous sheet + x 10 
dyne-cm. 

b) for a fractured sheet (2.0 + 1. 0) x 1029 
dyne-cm. 

3) When removing the effect of the local sediments, 
it was found that: 

a) their gravitational attraction should be 
calculated using their true density. 

b) the increased load height need only be consi~ 
dered as an extension of the rest of the load, 
taking its density in contrast with water and 
not the sediments. 

4) If the sediment effect is not removed there will 
be an error on the order of 1.0 x 10 2 8 dyne-cm in 
the calculated best fit effective flexural rigidity. 

5) A change in load density by 0.2 gm/cc can cause a 
change in the best fit effective flexural rigidity 
by as much as 20% • 

6) When modeling the lithosphere as a viscoelastic 
body, the required thickness needed to explain 
the modeled values for the elastic plate models 
are: 

a) for the continuous plate: 40 - 70 km. 

b) for the fractured plate: 20 - 35 km,, 

If we first consider the lithosphere as an elastic 

plate, then upon substitution of the above modeled values 
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for the best fit effective flexural rigidity into Equation 

• 14, we can obtain the effective thickness of the litho~phere 

which is necessary to explain the observed results. In 

doing this for the continuous elastic plate model we get 

• a thickness of 7.86 km, while for the fractured elastic 

plate model we get 13.1 km. It should be noted that the 

above thicknesses represent strictly effective thicknesses 

• so that a lower value would be expected with respect to 

the true lithospheric thickness. But even with this con-

sideration, both modeled thicknesses are still quite thin~ 

• In a similar study by Watts and Cochran (1974)~ the 

same models were run near Nihoa Island which lies within 

300 km of Necker Ridge. This study found best fit effec-

29 tive flexural rigidities of 4.0 x 10 dyne-cm for the 

continuous elastic plate model and 1.0 
30 

x 10 dyne-cm for 

the fractured elastic pla~e model. Substituting these 

• values into Equation 14 to obtain the plate thicknesses 

yields 16.5 km and 22.4 km for the continuous and frac-

tured models respectively. Although these values are still 

• quite low, a more important aspect to notice is that the 

lithosphere must thicken by approximately 9 km for both 

models if the elastic lithospheric case is to hold • 

• No explanation has been found which· adequately explains 

the required thin lithosphere as well as the rapid change 

in thickness as calculated above • It is therefore concluded 

• 

• 
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here that an elastic lithospheric model is not a valid 

• one. 

In modeling the lithosphere as a viscoelastic body, 

it has been shown that, depending on how we match the 

• viscoelastic deflection, a given range of thicknesses can 

be found which will explain the observed data. If we first 

consider the viscoelastic lithosphere modeled as a frac-

• tured elastic plate, then the required thickness needed 

to explain the observed data must lie within the range 

20-35 km. Although this range is larger than the values 

• determined using the elastic case, it is still quite low, 

requiring a very thin lithosphere. 

If we are to consider the lithosphere as the rela-

tively rigid upper portion of the earth underlain by a 

relatively fluid substratum then it seems valid to assume 

that no earthquake foci will occur below the lithosphere, 

• within the asthenosphere. 
,. . 

In a study by Eaton and Murata 

(1960), it was found that for the Hawaiian Islands, the 

deepest earthquakes observed originated at a depth of about 

• 60 km, that being the approximate lower limit. If we use 

this as an ~pproximate upper limit for the base of the 

lithosphere, then upon subtracting the water depth, we 

• get a minimum thickness on the order of 55 km. Therefore, 

using this value as an approximate thickness, we see that 

the above range of 20-35 km is still much lower than e x-

• pected • On the other hand, if we consider the viscoelastic 

• 
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lithosphere modeled as a continuous elastic plate, then 

our required thickness will lie within the range 40-70 

km which does in fact seem reasonable as compared to the 

above predicted value. We therefore conclude that the 
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lithosphere can be adequately modeled as a continuous visco

elastic body and described using continuous elastic plate 

theory allowing for a viscoelastic effect with time. It 

should further be noted that although this method does 

not determine an exact lithospheric thickness, it does 

determine a range of thicknesses which will explain the 

observed data. Also, as pointed out earlier, for loads 

of longer duration, the best overall fit will lie closer 

to the elastic amplitude fit of the vis~oelastic deflec

tion which, in effect, implies that the best fit will 

lie closer to the thicker portion of our range of cal-

culated thicknesses • In this light, it seems that for 

the Necker Ridge area a visco~lastic lithosphere of thick

ness in the range of 50-70 km would seem to explain the 

observed data as well as the minimum thickness determined 

seismically. 

We will now look at the results obtained by Watts 

and Cochran (1974) for their profile near Nihoa Island, 

where they matched the viscoelastic deflections using 

on ly the continuous elastic plate model and not the 

fractured elastic plate model • In their study, when 

using the continuous elastic plate to match the visco-
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elastic deflections, they show that a plate thickness of • 50 km is the minimum value which explains the observed 

results. They further show that a plate thickness of 75 

km is too large to explain their results yielding an 

acceptable range of 50-70 km thickness which will explain 

their data. 

• This thickness range, being the same as that found 

for this study, strongly supports the idea that a visco-

elastic lithospheric model is a good one. It further 

• introduces the possibility that deflection studies, such 

as these, can be used to determine a range of lithospheric 

thicknesses for different areas. 

• We will next consider the overall results found by 

Watts and Cochran (1974) for the best fit effective flexural 

rigidities over the entire Hawaiian - Emperor Seamount 

• Chain • From their results it is seen that the observed 
, 

rigidities increase from the northernmost part of the Em-

peror Seamounts down to the Hawaiian - Emperor Bend. The 

• loads used to compute these rigidities are all fairly old, 

ranging from 58.5 my in the north to 45 my near the bend 

where, from Figures 22-27, these ages dire c tly eorrelate with 

• a thickening of the lithosphere • Therefore, to explain 

their results using a viscoelastic lithospheric model, 

the lithosphere is required to thicken fro m the northern 

• Emperor Seamounts going south toward the Hawaiian - Emperor 

Bend • 

• 
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In the same study, Watts and Cochran also looked at 

• three profiles along the Hawaiian Chain, one of which has 

already been discussed. Another of these profiles, which 

lies further southeast of Necker Ridge, near the island 

• of Oahu, was shown to require a lithospheric thickness of 

at the most, 50 km to fit the data. Their last profile, 

which was halfway between the Necker Ridge and the Hawaiian -

• Emperor Bend also required a thickness of about 50 km • 
.· 

Although there is no obvious trend here, with the excep-

tion of the last profile mentioned, there seems to be an 

• indication that the lithosphere thickens as one goes from 

Hawaii toward the Hawaiian - Emperor Bend, recalling that 

for the Necker Ridge area a thickness of 50-70 km is needed 

• to explain the data • 

If we now consider how the age of the sea-floor varies 

over this area, we see that the youngest areas are at the 

• northern end of the Emperor Se'.amounts and around the Island 

of Hawaii, while the oldest area is at the Hawaiian - Em-

peror Bend (Hilde, et al., 19 76). This then draws a direct 

• correlation between lithospheric age and thickness, where 

the older it is, the thicker it becomes. We 

conclude that: (1) the lithosphere can be modeled as a 

• continuous viscoelastic plate overlying a fluid substratum; 

(2) deflection studies based on a continuous viscoelastic 

lithosphere can be used to determine effective plate thick-

• 

• 
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nesses; (3) the effective plate thickness under the 

Necker Ridge is between 50-70 km; and (4) the lithosphere 

seems to thicken with age, although it is beyond the 

scope of this study to determine any specific thicknesses 

other than that for the Necker Ridge area • 

i 
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APPENDIX 

• LOADING OF AN ELASTIC LITHOSPHERE 

We shall consider here an elastic lithosphere rest-

• ing on a substratum (asthenosphere) of negligible strength • 

The following notation will be used: 

H thickness of the lithosphere 
P1 = density of load 

• Pz = d~nsity of infilling material 

P3 = density of the as thenosphere 

Consider first the bending of a long rectangular 

• plate, subjected to a transverse load which does not vary 

along the length of the plate. In this way we can consider 

the deflected surface of a portion of the plate, a consi-

• derable distance from the ends of the plate, as cylindri-

cal where here we shall define the a x is of the cylinder 

as the y-axis (Figure 32)o 

• To obtain the equation ~or the deflection of the 

plate, we shall consider the plate to be of uniform thick-

ness H and shall take the xy plane as the middle plane ~ of 

•• the plate before loading (i. e o ' midway between the faces of 

the plate) with the z-axis positive downward. 

In setting up the problem like this, we need only 

• consider a small strip of unit width in order to analyze 

.. the deflection • If we further assume the lithosphere as 

being continuous, then we have the condition that there 

• will be no distortions in the cross-section of the strip 

• 
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Figure 32. Lithospheric model used for this study. The 

model represents a rectangular plate subjec

ted to a line load along the y-axis. 

Figure 33. Cross-section of thi lithospheric model shown 

in Figure 32. The line NN' represents the 

neutral surface which undergoes no longitudi

nal strain during deformation. 
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during bending. Our cross-section is shown in Figure 33 

where it can be seen that as the plate is loaded, the upper 

portion will undergo compression while the lower portion 

undergoes tension • Thus we have a surface which will 

undergo no longitudinal strain, defined as the neutral 

surface, as shown by the line NN' in Figure 33. If we 

define the radius of curvature of the plate, R, as the 

distance to the neutral surface, then we can derive a 

convenient expression for the st rain by defining it as the 

change in length per unit length. Thus we can write 

SS' - NN' (R+Z) - R z LlNN' 
E: = = (Al) 

xx 
R NN' NN' R 

Consider next Hooke's Law for an isotropic solid 

given by 

1 + (J (J 
E .. = (J •• E" 0 .. 0

kk 1J E 1J 1J ' (A2) 

; 

where E •. = strain 
1] 

(Jij = stress 

(J = Poisson's ratio 

E Young's Modulus. 

From our assumption of no distortion occurring in the cross-

section we have the condition that CE = 0 where, from 
YY 

Equation (A2), we get Oyy = ooxx or upon substitution again 

into Equation (A2) yields 

(J 
xx 

E 
(A3) 
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which becomes after substitution of Equation (Al) 

EZ 
(J 

xx (A4) 

It is easy to show through a study of the curvature of the 

fiber NN' that for small deflections ( ; = O) we can 

write 

- -- = 
dx2 R 

with which (A4) becomes 

(J 
xx 

-EZ 

l-cr 2 

Now consider the force distributed over just the 

(AS) 

(A6) 

shaded portion of Figure 32 in the xz plane . This force 
. 

can be written as crxxdz whereby the internal couple (bend-

ing moment) about the y-axis associated with the bending in 

the xz plane is given by (crxxdz)z. Summing up all the 

moments on the complete cross-section and substituting in 
; 

(A6) yields the total external couple, M : 

M 
JH/2 
-H/2 zcrx·xdZ 

d 2w 
(A7) -D dx2 

where D = E x H3 I [ 12 x (1 - a2) ] (AS) 

is called the effective flexural rigidity of the plate. 

In order to develop the equilibrium equations, we 

will define the shearing force, Q, acting on our cross-

section as the algebraic sum of all the external forces 

applied to the cross-section and the bending moment, M, 

as the sum of all the external couples applied to the 
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cross-section. If we define our plate as being subjected 

• to a vertical force, F, then there will be, due to the resul-

tant deflection, a continuously distributed reaction force 

(Buoyancy force) in the asthenosphere directed upward and 

• opposing the deflection • This force will, in turn, be 

directly proportional to the deflection, and so can be 

defined as p = kw for some given point. 

• Now consider just an infinitely small element of our 

cross-section, as shown in Figure 34. In this case, p = gp 3w 

represents the resultant force per unit length due to the 

• deflection, F represents the net vertical external force 

per unit length being applied to the plate, Q represents 

the shearing force (defined as positive ~pward) and M 

• represents the bending moment (defined as positive 

in the clockwise direction). 

The equation for the equilibrium of the vertical forces 

• then becomes ; 

Q - {Q + dQ) + pdx = Fdx = 0 , 

dQ 
or dx = p - F = gp3w - F (A9) -• 
and similarly, the equation -for the equilibrium of the 

moments about the y-axis becomes 

• dM - Qdx = 0 , 

or Q dM 
(AlO) 

dx 

• 

• 
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Fig u re 34. Cross~section of our lithospheric model, 

showing the direction of forces acting 

upon an infinitely small element of it. 
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wh ere, if we combine (A9) and (AlO) we get 

d 2M 
axz = gp 3w - F 

and using our relation for M given in (A7) we get 

F • (All) 

In our particular case we shall divide the applied 

f orc e Finto two components: 

1) an applied load such as a ridge or a continent 
impinging on a downgoing slab given as "P"; and 

2) a downward force applied to the plate by any 
material infilling the deflection given by 
"gpzw". 

Thus our deflection equation becomes 

a4w 
D ~- + gp 3w = gp 2w + P , 

·ax4 

o r wore conveniently 

(Al2) 
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